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Student Intuitions of Lines:
Exploring their origins, uses, and interactions

Ming M. Chiu
Education, Math, Science, and Technology

University of California, Berkeley
USA

ABSTRACT
In this study, I examined intuitive conceptions in geometry, focusing on

their origins, uses, and interactions.  Data included audio taped interviews of
sixteen middle school students during pre- and post-tests.  When asked to rank
several paths between two points according to length, these students invoked
four intuitive criteria:  compression, detour, complexity, and straightness.  My
analysis of their explanations suggests that these intuitive conceptions originated
from everyday experiences (such as motion).

The students productively applied these intuitions to simple comparisons
of paths (e.g. straight line vs. staircase), but spontaneously recognized their
inadequacy for more difficult comparisons.  Then, I taught them a new strategy:
rearranging the linear pieces of the paths into horizontal and vertical
components.  In their post-test with additional paths three weeks later, most
students continued to use their intuitions.  After recognizing their inadequacy
again, they independently and successfully applied their new strategy.

In both pre- and post-tests, many students invoked multiple intuitions
when comparing two paths. They tried to resolve these intuitions' interactions by
ranking them and by integrating them.

1.0  INTRODUCTION
A programmer manipulates a computer's memory like a blackboard,

writing and erasing as needed.  But can a teacher simply "insert" or "delete"
information from students' minds?  Researchers in the fields of education,
psychology, and linguistics argue persuasively that a teacher can not because
students invoke intuitive knowledge that can either facilitate or hinder their
learning.  Since the existence of student intuitions is gaining recognition,
researchers and educators must push further to explore their origins, uses,
interactions and ultimately specify their role in learning and development.1

This paper begins by reviewing some of the research on intuitions.  Then,
I present a study of sixteen middle school students using their intuitions to
compare the relative lengths of two dimensional paths.  After discussing specific

                                    
1Intuition and intuitive concept are used synonymously.
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intuitive concepts and their applications, I examine the students' uses of multiple
intuitions in different situations.  Finally, I conclude with some implications for
instruction.
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2.0  THEORETICAL PERSPECTIVE

2.1 WHAT IS AN INTUITION?
Researchers from various fields have argued that students have intuitive

concepts that typically 1) originate prior to schooling, 2) conflict with expert
ideas, and 3) resist attempts to circumvent them.   Piaget and his colleagues
(Piaget & Inhelder, 1948/1967; Piaget, Inhelder & Szeminska, 1948/1960; Piaget &
Szeminska, 1941/1952) showed that children responded to questions about
space, geometry, and number with consistent answers that varied significantly
from those of adults.  Research in the areas of psychology (Carey, 1985, 1988;
Ogborn & Bliss), linguistics (Talmy, 1988; Lakoff, 1992), history of science (Kuhn,
1965), and philosophy (Johnson, 1987) have further buttressed this claim.   In
mathematics education in particular, Davis and Vinner (1986), Nesher (1987),
Mason (1989), Fischbein, Deri, Nello, & Marino (1985), Shaughnessy (1977), and
Clement (1982) have demonstrated that students' intuitions persisted despite
instruction in calculus, subtraction, polygons, multiplication, probability, and
algebra.  Numerous studies documenting the prevalence of intuitions in diverse
disciplines (Confrey, 1990; Eylon & Linn, 1988) have highlighted the importance
of understanding this phenomena in order to develop appropriate instructional
strategies.

I further explicate the term "intuition" by contrasting it with a prototypical
"formal concept" in six ways:  origin, societal support, explication, systematicity,
and justification (see Table 1).  Consider the formula "the area of a triangle = 0.5 x
base x height" and the intuition "taller things are bigger." In contrast to the
formal teaching of the expert-generated triangle formula in school, students
discover the height-volume relation from their own experiences without
institutional instruction (Confrey, 1990).  Furthermore, the formula is clearly
delineated, denoted and defined in relation to other mathematical concepts as
part of a coherent and consistent system (Vygotsky, 1934/1986).   On the other
hand, the intuition lacks precise articulation and may not be strongly tied to
other notions (formal or intuitive).  Finally, teachers justify the validity of the
triangle formula by appealing to its systematic coherence with other
mathematical concepts and to their authority as representatives of both the
society and the discipline.  In contrast, when students justify the taller-bigger
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intuition, they point to the purposeful reality of their physical and social
experiences.  In short, an intuition is a relatively unarticulated and sparsely
connected notion arising from and justified by a person's experience without
the aid of formal instruction.

Table  I. Comparison of formal concepts and intuitions

Formal concept Intuition

Origin Expert-generated Self-discovery

Societal Support Teacher  Little or none

Explication Precise Relatively unarticulated

SystematicityTightly connected Sparse links

Justification Systematicity + Authority Personal experience

2.2 INVOKING INTUITIONS IN UNFAMILIAR SITUATIONS
People facing a problem in an unfamiliar domain may use their intuitions

rather than general purpose strategies (such as means-ends analysis (Newell &
Simon, 1972)).  The prevalence of intuitions in daily life endows them with a
credibility that encourages their use outside of their usual contexts.  In an
unfamiliar situation, a person without a clear method of tackling a problem may
turn to any intuition that has seems promising to him or her.  As a result, the
person's intuitive solution attempt may prove ineffective.  Since an intuition may
accumulate credibility through successful uses in everyday activities, the person
continues to perceive it as successful.  On the other hand when a person applies
an intuitive concept successfully, he or she may not systematically apply it to
isomorphic problems because s/he may not recognize the critical components in
his/her problem solution.  When a person uses an intuition in unfamiliar
situations, failures can be negated by repeated successes in everyday activities,
and successes are not necessarily replicable.

2.3 INTERACTIONS BETWEEN INTUITIONS
Many studies have focused on specific intuitions, but few have examined

how multiple intuitions interact when invoked within a particular situation.
Hewson (1981) and diSessa (1983; 1988; in press) argue that students may resolve
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conflicts between intuitions by raising or lowering the status of one relative to
the other.  In particular, diSessa describes a knowledge network with two types
of priorities, cueing and reliability, for each student's intuition.  The cueing
priority quantifies the degree of "fit" between the situation's salient features and
the intuitive concept.  After an intuition is cued, the reliability priority helps
determine its applicability by providing feedback based on other knowledge,
such as mathematical principles and other intuitions.  

Consider the Piagetian problem of pouring liquid from a short, wide
beaker into a tall, thin cylinder.   Assumr that a child also knows that "wider
things are bigger."  The child then cues both intuitive concepts due to the beaker
and the cylinder's salient size differences.  The "taller" intuition may have a
higher reliability priority because most of the big things that he/she's seen are
tall.  The child then promotes the status of the "taller" intuition and demotes that
of the "wider" intuition, thereby concluding that there's more liquid in the taller
cylinder (in the absence of other competing views such as a conservation of
matter principle).  On the other hand, the child may compare a tall, wide beaker
and a short, narrow cup, both filled with liquid.  In this situation, the same
intuitions can promote each other's status and support the conclusion that the
beaker contains more liquid.  Feedback about the conclusion then serves to
modify the cueing and reliability priorities appropriately.  So multiple intuitions
may interact as a person compares their fit to the current situation and the
history of their successes and failures.

2.4 COHERENCE OF INTUITIONS
The research perspectives on the coherence (the intricacy and density of

connections) among intuitions span a continuum from the virtual vacuum
(Skinner) to the tightly-woven theory (Carey).  

Skinner (1954) argues that learning was nothing more than chains of
behavioral responses to stimuli.  Given the appropriate reinforcement and
"shaping" by an instructor (or a machine), a student could learn any behavior.
His teaching program ignores prior knowledge because each chain of behavioral
responses is essentially separate from each other unless integrated by
appropriate stimuli.  Hence, early learned behaviors are largely unrelated, if not
isolated.



8

diSessa (1983, 1988, in press) argues that students generalize from
common experiences to create loosely-connected, heterarchical pieces of
information.   Connections are formed from the serendipitous juxtapositions of
these experiences mediated by concerns such as agency and causality.  As
students progress toward expertise, they build additional connections to
systematically structure their knowledge (diSessa, 1983, 1988, in press; Hawkins,
Apelman, Colton & Flexner, 1982).   Although novices may respond to
unfamiliar questions inconsistently, diSessa (1983, 1988, in press) argues that they
use only a limited set of intuitions in contrast to the infinite range of guesses in
Skinner's view.  

Talmy (1988) proposes a systematic, dimensional ordering of intuitions
that involve forces.  Each intuition sits at an intersection of an n-dimensional
matrix with parameters such as relative strength and result.  Although Talmy
does not present a developmental mechanism for these connections, one might
speculate that additional knowledge builds upon a small core of dimensions and
intuitions.   Extrapolating along this view of intuition, novices may answer
incorrectly initially, but will move toward a predictable final result along its
known dimensions, unlike the unpredictability of Skinner and diSessa's views.

Finally, several researchers argue that students construct systematic,
intuitive theories.  Many physics researchers (McCloskey, 1983; Halloun &
Hestenes, 1985; Nersessian & Resnick, 1984) point to a variant of "impetus"
theory as the intuitive theory for physical motion.  Although the proponents of
this view generally limit their scope to physics, Carey (1985, p. 200) has
conjectured that infants "are innately endowed with two theoretical systems: a
naive physics and a naive psychology."  In this view, student's intuitions are
integrated into a coherent system in which reasoning flows smoothly rather than
jumping from one knowledge piece to another.  Consequently, students should
answer questions predictably and consistently (but possibly incorrectly).

In short, the coherence of one's intuitions may be practically non-existent,
minimally clustered, dimensionally structured, or tightly woven.
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2.5 RESEARCH QUESTIONS FOR EXAMINING GEOMETRY
INTUITIONS

Thus far, I have speculated on the source of intuitions, the nature of their
uses, and some possible interactions.  The remainder of this paper addresses
these issues through my analysis of student interviews.  In particular, what
intuitions do these students invoke to compare lengths of two dimensional lines?
Where do they originate? How do they use these intuitions?  Do these students
invoke their intuitive concepts consistently across different situations?  Do they
employ multiple intuitions? If so, how do they interact?  What happens to their
intuitions when students learn a formal strategy?

3. 0 METHOD
In this study, I analyzed two problem solving sessions, possibly with

instruction at the end of the first one.  Three weeks separated the first and
second problem sessions.  The format of the individual interviews drew upon
Piaget's revised clinical method (Piaget & Szeminska 1941/1952).   Data collection
included audio tape, field notes and students' written work.

The analysis proceeded as follows.  After transcribing the audio tapes, I
incorporated recorded gestures from my field notes into the dialogue (so the
temporal placement of the gestures is only approximate).  The coding consisted
of two parts.  The open coding (Strauss, 1987) identified different intuitions and
their uses, forming tentative categories.  Through axial coding (Strauss, 1987), I
examined variations among the intuitions employed and refined the categories
by looking for variations along particular dimensions (See Appendix A).   
Finally, a second coder used my criteria to recode the entire transcript.

3.1  STUDENTS AND SETTING
The sixteen students (twelve- to fourteen-year-olds) attended a summer

remedial program for Asian-American middle school students.  This program
draws its target population from seven different local public middle schools.
Although fifteen of the students immigrated to the United States between three
to five years ago, they all spoke English fluently.   All the students were taking
first year algebra in the fall, and none had taken geometry yet.
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I assisted the teacher during sports activities and knew several of the
students from the previous year.  During study period, I interviewed individual
students in a separate classroom without any time constraints.

3.2 PROCEDURE
Three transparencies sitting separately on a table greeted each student

(see fig. 1).  The interviewer then demonstrated that each path connects two
points on a fourth transparency.  Next, he asked them to "compare their
lengths."2

A B C

Figure 1. L (A) , diagonal (B), and staircase (C) paths

Most middle school students knew that the diagonal line is the shortest,
but many had difficulty determining that the staircase and L paths have the same
length. If a student did not solve the problem, the interviewer provided a ruler,
graph paper, index cards, paper clips, rubber bands, string, scissors, and tacks to
help him/her.  If a student did not present a solution that included aligning and
comparing the equivalent lengths of the non-linear paths' horizontal and vertical
components, the interviewer provided "scaffolding" (by adapting the explicitness
of the question to the student's progress, (Rogoff & Gardner, 1984; Vygotsky,
1978; Wood, Bruner & Ross, 1976; Wood, Wood & Middleton, 1978) to encourage
the student to construct the "align and compare" solution.  (See Fig.  2, Appendix
B).

                                    
2Although I refer to the lines as paths in this paper, I only used their letter names
when discussing them with the students.



11

A C

Figure 2. Align and compare solution for L and staircase paths

Three weeks later, each student received a similar question, also on
transparencies (see fig. 2).  This problem included two additional paths: a zigzag
path (B) and a staircase with  an incline section (D).  Moreover, in this problem,
the transparencies were initially on top of one another, not separated as in the
first session.

A B C D E

Figure 3. Staircase (A) , zigzag (B) , diagonal (C),
staircase with incline (D) , and L paths  (E)

To solve this problem, the students could align each segment in the zigzag path
to a part of either a horizontal or a vertical segment in the L-path and compare
the differences. For instance, each of the zigzag's segments was either equal to
greater than its L-path counterpart. overlapping one another when aligned with
corresponding horizontal and vertical segments of the L-path (see fig 4).3

                                    
3Each  zigzag segment must be aligned with either a horizontal or vertical part of
the L-path  and all parts of the L-path must be included in the comparison.
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Figure 4. Align & compare solution for the zigzag path

Similarly, the staircase with incline path was shorter than the L-path (see fig. 5).  
Except for the incline and the L-path's corresponding horizontal and vertical
segments, all the other segments can be aligned as before to demonstrate that
they have equal corresponding lengths.  The remaining segment, the incline,
forms a triangle with the two remaining segments of the L-path.  Since the
incline is the hypotenuse, it must be shorter than the sum of two L-path lengths.
Consequently, the staircase with incline path is shorter than the L-path.

Figure 5. Align & compare solution for
the staircase with incline path.

4. 0 RESULTS AND DISCUSSION
I begin by discussing four central intuitions that students used to solve the

problem.  Next, I discuss their uses in different situations.  Finally, I examine the
interactions of multiple intuitions.

4.1 FOUR INTUITIONS
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In coding these interviews, I categorized students' comments as intuitions
if they 1) justified a answer, 2) stemmed from their own experience, 3) did not
appeal to authority, and 4) did not appear in standard mathematical textbooks.
Measuring with a ruler or using the "align & compare" method would not be
intuitions, for example.

4.1.1 COMPRESSION
Several students argued that some of the paths had been compressed and

thus were longer than they appeared.  Many familiar every day objects are
compressed, so that one can increase their size with little effort.  For instance,
curly hair, telephone cords, balls of strings, and folded napkins are only a few
examples of compressed objects.  By pulling the ends of a telephone cord apart,
one can apparently increase its length.   HA, like most students who invoked this
concept, stretched out compressed paths to reveal their actual length.

[HA, I, 119-123]4

HA: I think this [staircase, C] is longer [than the straight path, B], um, this
[straight path, B] is like a piece of string, right?

I: uh-huh.
HA: And this [staircase] is like a piece of string, too except this [staircase, C] is

shaped like this [staircase, C], so if you pulled it out, then, it would be
longer than B [straight].

HA imagined the static line to be a piece of string which could be manipulated.
By pulling out the staircase path, he claimed that it was longer than the straight
path.

4.1.2 DETOUR
Several students viewed the lines on the transparencies as motions.5

Through crawling, walking and running, children learn that moving away from
their destination increases the distance (and time) that they travel.  To compare
two lines, some students imagined objects moving along them and argued that

                                    
4Student, session number, line number]
5Lakoff (19??) argues that this is an instance of a standard image schema
transformation from a one dimensional path to a trajector moving along that
path.
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paths with greater detours from the destination were longer because they
required more space to reach their goal.

[FF, II, 193-196]
I: How about E?
FF: B and E?  Oh, great, they could be the same, too. Wait, B's longer cause it

slants more, you know, like it goes away more, so B's longer.

FF explained that the zigzag path (B) was longer than the L-path (E) because the
zigzag path "slants more" and "goes away more" from its destination.  Therefore
paths that detour further from the destination are longer.

4.1.3 COMPLEXITY
Several students used a complexity criteria to argue that paths composed

of more segments are longer.  Often, one can compare the sizes of two wholes
by counting their constituent parts.  Waiting in line behind more people
generally requires more time.  Houses with more rooms tend to be larger.  A
post office seven blocks away is probably farther than one that is three blocks
away.  Even though these units --waiting time per person, rooms, and blocks --
do not describe uniform quantities, counting them often yields sufficient
approximations for comparisons.  

[LI, I, 1-14]
I: Compare the lengths of A [L path] , B [diagonal path], and C [staircase

path] .
LI: What do you mean?
I: Longer, shorter.
LI: Oh, which one is longer?
I: Let's take two of them at a time.
LI: I think this [diagonal path] is the shortest, this [staircase path] the longest,

and this [L path] is in-between.
I: Why is that?
LI: Because this one [diagonal path] looks like it's about this size [vertical

segment of L-path A] except there's like this [horizontal segment of L-
path A] right here. So it would go down [rotates horizontal segment of A
[L-path, so that it is collinear with the vertical segment of A], so this [L
path] would be longer than this [diagonal path].  And this [staircase path] I
don't know but it just seems to have a lot of lines, so it seems more
longer.

LI immediately ordered the paths, and confidently demonstrated that the L-path
was longer than the diagonal.  L may have viewed the staircase path as a gestalt,
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saying that the staircase path "just seems to have a lot of lines, so it seems ...
longer."  The staircase seems to be the longest because it is the most complex.  

Many students counted the total number of lines after their complexity
explanation, so they did not know the exact number of subunits (usually line
segments).  Instead, they could have relied on a general gestalt to determine the
relative complexity of one path to another. 6   Complexity, then, precedes
number.

4.1.4 STRAIGHTNESS
Several students simply stated that the straight line was the shortest

without further justification.  Consequently, I have labeled it as an intuition even
though they could have derived it from the other three intuitions.  The multiple
definitions associated with the word "straight" may also reinforce this concept.  In
addition to the physical experiences described in the compression and detour
sections above (4.1.1 & 4.1.2), the use of "straight there" to minimize distance and
both "straight off" and "straight-away" to minimize time support the concept "the
shortest path between two points is a straight line." A typical invocation of the
straightness intuition follows after FF claims that B [the straight path] is the
shortest.

[FF, I, 4-11]

I: Why is B the shortest?
FF: Well, because it's like one straight line. It connects the dots.  It's not curved

or anything.
I: So why is a straight line better than a curved line --shorter than a curved

line?
FF: Well, I mean it takes, I mean, (2)7 I don't know.  (4)  I guess because this is

smaller, I don't know.  The other one [stair case or L-path or curved line?]
like takes up more space I guess, is longer.

FF immediately picked out the straight diagonal path as the shortest.  She said
that the diagonal path was "like one straight line," and contrasted it with lines or
objects that are "curved."  When asked for further justification, FF hesitated and
did not elaborate.  Her two "I don't know" statements further suggest that she

                                    
6In the first problem, the relative complexity of the paths can be easily
determined because the paths have one, two, and six line segments.  In the
second problem, the longer paths had 8, 10, and 13 line segments.
7numbers inside parentheses [pause] indicates duration of silence in seconds.
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did not have a deeper layer of reasoning beyond the recognition of the path's
straightness.  

In short, students invoked four intuitions to explain their length orderings
of paths: compression, detour, straightness, and complexity.

4.2 USING INTUITIONS
This section begins with a summary of the students' intuition use before

examining individual student applications in detail.

4.2.1 OVERVIEW OF INTUITION USE
Every student used at least one intuition to solve the problem in the first

session (see Table 1).  Moreover, 93% of the students began solving the problem
with an intuition.   However, their intuitions could not help them determine that
the L and staircase paths had the same length.   Each student also tried other
strategies such as visual estimation and correspondence (such as align &
compare), but only six students (31%) solved the problem (with "align &
compare").  
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Table II. Percentage of students (N=16) who invoked each intuition at different
times

                                                                                                                                                                                         _ _ _ _     
Session I Session II

 1st  2nd  3rd   Total 1st  2nd   3rd  Total

Compression 31% 25%   0%   81%   6% 25%   6% 50%
Detour  6% 19%   6%   31% 13%   0% 19% 31%
Straightness      44% 19%   6%   81% 56% 13%   0% 69%
Complexity 13%   0% 25%   50% 13% 13% 25% 56%

Total 93% 63% 38% 100% 88% 50% 50% 93%

Other   6% 31% 31% 13% 44% 31%

Average number of intuitions: 2.43 2.06
   
Note that the total percentages do not total to 100 because some students used only one or
two criteria. Likewise, the total percentages for each intuition also includes its use as 4th
or later choices.
________________________________________________________________

 

Despite the inadequacy of their intuitions in the previous session, 88% of
these students began the second problem with one of these four intuitions.  
However, most students (81%)  began with a different intuition in the second
session.  Although they had some limited success, they recognized their
intuitions' limitations. Eventually, 83% of the students applied the "align &
compare" method successfully not only to the paths they had seen before, but
also to at least one of the new paths as well.  

No student during either session applied a single intuition systematically
across all path comparisons.  Only 6 (37%) students applied an intuition to more
than one problem in session I, and only two (13%) in session II.

The students' answers reflected not random guesses but recognizable
intuitions.  Despite the students' use of a successful competitor (align &
compare), their inadequate intuitions not only co-existed but continued to
demand a higher priority.
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4.2.2 INDIVIDUAL USES  OF INTUITIONS ACROSS PATH
COMPARISONS

None of the students in this study systematically compared all the paths
using one intuition in either problem solving session.  As discussed earlier,
novices do not necessarily recognize the critical aspects in an unfamiliar problem
and thus may not apply the same intuition to each problem.  Most students
bounced from one explanation to the next as they compared pairs of paths
without explaining the inadequacy of prior strategies before using new ones.
OZ, for example provides four explanations using four different criteria, but each
can only be applied to particular path comparisons.  OZ begins with a reference
to the L-path's longer segment, but continues with a detour explanation.

[OZ, I, 6-12]

I: What do you think of A [L-path] and B [diagonal]?  Which is longer?
OZ: A [L-path] is longer than B [diagonal].
I: Why is that?
OZ: Um, one [L-path] is like, it has like a longer line and it goes far out and B

[diagonal] is just goes across and is shorter.

OZ then develops an "align & compare" strategy.

[OZ, I, 13-19]

OZ: ... this one is the same.
I: Which two?
OZ: A [L-path] and C [staircase].  Because this line, the one that goes up and

down [A's vertical segment], you have this one and this and this one
[staircase's, C's three vertical segments] looks the same. And then for the
line on the bottom [the L-path A's horizontal segment], you have um, C
[staircase] and it goes like that [traces C's horizontal segments], but it's
this [the L-path A's horizontal segment] and it's [the L-path, A and
staircase, C] the same. It's the same.

However, OZ returned to a compression explanation for his comparison of the
staircase and the diagonal paths.

[OZ, I,  20-29]

I: How about C [staircase] and B [diagonal]?
OZ: This is longer. C is longer.
I: Why is C longer?
OZ: Because (2) I think this [staircase] is longer, because if I make this C

[staircase] straight, make it straight, it's going to be longer.
I: What you do you mean by making it straight?
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OZ: If I like make these [corners of C] straight, then it's gonna be longer.
I: How are you going to make these [corners] straight?
OZ: Like fold it out straight like.

Then, the interviewer asked for additional perspectives on the length
comparisons between the three paths.  OZ said that he could not apply any of his
solutions to another path comparison.  Despite his use of several strategies, he
could not apply any of them to different path comparisons.  Their use depended
on the particular situation.  Instead of viewing the path comparisons through a
single coherent lens, OZ applied different pieces to different situations.8

These excerpts also demonstrate the inadequacy of labeling an intuition as
correct or incorrect.  Students successfully used them in many instances, but not
others (e.g. LI in section 4.1.3).  By judging them as more or less appropriate to
particular situations, we can move beyond right or wrong to more sophisticated
criteria such as  range of appropriateness, ease of use, and coherence with other
ideas.

4.2.3 SUMMARY OF INTUITION USE
These students initially turned to their intuitions to solve the path

problem.  However, they did not systematically apply them to every path
comparison.   In addition to bouncing from one intuition to another to compare
paths, these students demonstrated the fragmented nature of their intuition use
through their extremely limited application range. Moreover, students produced
both correct and incorrect results by using their intuitive concepts, so intuitions
can not be assessed as simply positive or negative.  Despite their intuitions'
inadequacies, these students continued using them at the beginning of the
second session.  Thus, their intuitions had a higher priority than their co-existing
successful competitor, the align & compare method that they would later use to
solve the problem.  

4.3 INTERACTIONS BETWEEN INTUITIONS

                                    
8His behavior also suggests that he has a particular epistemology that does not
seek out or perhaps does not value simple generalizations that apply across
many situations.  Consequently, he is not making connections between his
strategies or between his strategies and these path comparisions. 
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Most of the students compared paths using one intuition at a time, but a
few students (19%) applied two criteria to the same comparison.  In this section, I
examine how students resolved conflicts and utilized mutually supportive
intuitions.

4.3.1 CONFLICTING INTUITIONS
 These students typically resolved their conflicts between multiple
intuitions by choosing one of them.  In the following example, FF's new criteria
overrules both of her two previous criteria.

[FF, II, 160-179]

FF: Okay, I guess B [zigzag] is longest of all of them. Yeah, these two are the
hardest to compare, B [zigzag] and D [staircase with incline] I mean.
Actually, now that I think about it, I think that D [staircase with incline] is
longer.

I: Why is D longer?
FF: Because they're more, well you know these [the zigzag's line segments]

are slanted, there are only three of them, three slants, and there are like
more well,

I: More what?
FF: More like um, like little steps, you know, sort of like stairs, you know

more steps, than that one [zigzag].
I: What is it about the stairs?
FF: What do you mean by the stairs?  I mean they look like little steps you

know. And there are more of them, than this [points to a slant of B].  I
mean even though these are slanted.  These two [zigzag, B and staircase
with incline, D] look like the same.  (2)  If you straighten this [staircase
with incline, D] out, this [staircase with incline, D] will be longer than this
line [zigzag, B], so it's [staircase with incline, D's] probably more.

FF believed that the staircase with incline path (D) might be longer than the
zigzag path (B) because it was more complex with "more steps." On the other
hand, the zigzag path had segments that were "slanted" and that detoured
further from the destination than any of the staircase with incline's segments.
She did not reconcile the two conflicting conclusions, saying that the zigzag (B)
and staircase with incline (D) paths "look the same."  By applying a third criteria,
compression, she decided that the staircase with incline would be longer than the
zigzag path, without reconsidering its relationship to the other criteria.

The overruled detour intuition reappears in a later comparison, though,
when I ask her about another path.
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[FF, II, 193-196]

I: How about E [L-path]?
FF: B [zigzag]  and E [L-path]?  Oh, great, they could be the same, too. Wait,

E's [L-path] longer cause it, like it goes away more, you know, so E's [L-
path] longer.

Even though she had decided against the result of her detour criteria, she uses it
again.  Intuitions may be virtually invulnerable in this respect because the
contradictions occur indirectly at the application level, not at the conceptual level.
Two intuitive concepts can generate contradictory results as above.  Since the
intuitions do not belong to a tightly connected and coherent system however,
the student need not re-examine the concepts.  As a result, the person can decide
that one or both conceptions do not apply to this situation and then,
compartmentalize them into different application contexts (Vinner, 1990).

Some students also employed criteria that were less dependent on the
particular situation.  In this excerpt, FF recognized a violation of the transitive
property of equivalence classes.

[FF , II, 144 - 156]

FF: ... So I guess D [staircase with incline] and E [L-path] are the same.  [Writes
"D same as E"]  This one [staircase with incline, D] probably first, well,
since they're the same, they're both first, um, the longest. And then,
actually these three are the longest [zigzag, staircase with incline, and
either staircase or L?] [looks at her written notes] --Wait a minute! It can't
be, not right. I messed up, because look, B [zigzag] is equal to --E [L-path]
is equal to B [zigzag] right?

I: Hmm.
FF: And then, E [L-path] is equal to B [zigzag].  Wait ... Yeah!  A [staircase] is

the same as E [L-path], so how can B [zigzag] be longer than A [staircase]?
so this [zigzag, B] is the same.

After FF had decided that the staircase with incline path (D) and the L-path (E)
were the same, she wrote that down and reviewed her results.  She recognized
that if E=B and A=E, B>A is not possible.  However, she did not backtrack to
determine the source of her error.  Instead, she decided that B must be the same
length as A perhaps because the relationship between A and B must conform to
the other salient equalities.  Thus, her concern for consistency provided a
criterion outside this particular situation.  However, as indicated in the prior
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excerpt [FF, II, 193-196], she switched her answer later.  In the course of the
session, she wavers back and forth and finally concludes that everything is the
same length based on her transitive equalities from above

[FF, II, 291-292]

FF: I guess they're the same.  Oh, I don't know. I guess they're the same, because
E=B and A=E and D=B, and C is the shortest.

This wavering reinforces a weak coherence view of intuitions because a coherent
system would eventually determine a course of action toward a single final
result.   As a result, this data supports Hewson (1981) and diSessa's (1983,1988)
view that intuitions resemble pieces of knowledge.

Students typically resolved conflicts between intuitions by choosing one
over the other or by invoking constraints involving prior results.  However,
students continued to use failed intuitions in later comparisons and "waffled"
between contradictory conclusions, demonstrating the fragmented nature of
their intuitions.

4.3.2 INFERENCES SUPPORTED BY TWO INTUITIONS
Reasoning along different intuitions may converge towards one

conclusion, as FF demonstrated at the beginning of her second session.

[FF, II, 9-19]

I: Which ones are you looking at?
FF: I'm looking at A [staircase]. And then well, I guess either B [zigzag] or D

[staircase with incline] is the longest.
I: Why do you think that?
FF: Because there are more zigzags in them, like instead of just going straight

across [and up], it [zigzag] slants down, so it's longer.
I: What do you mean by zigzags?
FF: Like you know, like this [points to a corner of the zigzag path]
I: Okay.

Initially, FF argued that the zigzag and staircase with incline paths were more
complex than the staircase path.  She recognized that there were more corners
("more zigzags") in the zigzag (9) and staircase with incline (12) paths than in the
staircase (7), diagonal (0), and L-paths (1).   Then, focusing on the zigzag path,
she said that the zigzag path instead of moving towards the destination, "slants
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down" away from it.  As a result of the mutually supportive conclusions from
applications of the detour and complexity criteria, she decided that the zigzag
and staircase with incline paths were longer than the other paths.

This serendipitous association between the detour and complexity criteria
did not endure.  Afterwards, she also used each criterion individually.  In this
excerpt from session II, she apparently used the detour criterion without
invoking the complexity criterion.

[FF, II, 64-75]

FF: Well, of these [staircase, L, and zigzag], I still think B [zigzag] is longer.
I: Why do you think B [zigzag] is longer?
FF: Well, I just, looks like it, because of the slants.
I: What is it about the slants that makes it longer?
FF: Well, because these [points to one of the staircase's horizontal segments],

they're just straight, and this [line segment slanting downward from the
left on the zigzag path] is slanted instead of going straight across. Cause if
this [zigzag's slant] was straight, then I mean it would be shorter than this
line [itself], too.  So I still think this [zigzag] is bigger than that [L-path or
staircase or both?].

Without referring to the complexity of any of the paths, FF alluded to the "slants"
of the zigzag path that contrast with the other path's segments which are
"straight across."   She also applied the complexity criteria without invoking the
detour criteria in the following segment.

[FF, II, 103 - 111]

FF: Hmm, I guess I'll try this one. [moves staircase with incline and L-path
transparencies on top of one another] (5)

I: What are you thinking?
FF: D looks longer.
I: Why is that?
FF: Cause it seems to have more (2)
I: More what?
FF: More lines, I guess.  I'm not sure, but it [staircase with incline] looks like

it's longer because it has more of them [lines?].

Here FF said that the staircase with incline had "more," suggesting a complexity
explanation without any references to detours.  Hence, the use of both the
complexity and detour criteria in one explanation did not appear to form a
permanent association between them.
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In FF's case, she applied the intuitive concepts separately, but GG seemed
to have coordinated them together so that the two criteria interacted with one
another in his explanation.  In the following excerpt, GG gave a compression
explanation demonstrating that the diagonal path was shorter than the staircase
path.

[GG, I, 40-46]

I: What do you think about B [diagonal] and C [staircase]?
GG: C is longer.
I: Why is C [staircase] longer than B [diagonal]?
GG: B [diagonal] is a straight line from here [upper left hand endpoint] to here

[lower right hand endpoint] and then this [staircase, C] they [the corners
of C?] all end up in the same end --same line and then this one [staircase,
C] goes waves, so if you stretch it out longer, it'll go about here [point on
extension of the diagonal].

GG later elaborates on his first explanation when the interviewer asks him for an
alternate solution.

[GG, I, 90-104]

I: Yeah, how else could you explain that B [diagonal] is shorter than C
[staircase]?

GG: The same way as I did to explain it to you.  Put it together like this [moves
B and C transparencies on top of one another] and put it [corner of
staircase, C] an equal line [convert the staircase into a linear path].  Where
it ends in the same place, they start right here, it ends right there. and then
this one [diagonal, B] just goes straight and this one [staircase, C] is going
away like this [points to a corner of C], so ah,

I: Can you repeat that? I didn't quite hear that.
GG: C [staircase] goes like way up and down, up and down.  B's [diagonal]

going just straight line so C [staircase] could be longer than that.  You
could measure it out like this [pulls lower endpoint of the staircase path
out along an extension of the diagonal path] .

GG began by saying that he's explaining "the same way" as he did before and
started converting corners into straight line segments.  Immediately after
referring to the line as an object ("put it ") however, he said that the line as "ends
in the same place," "starts right here," and "ends right there," in comparison to the
straight path B which  "goes straight. "  In contrast, the staircase path "is going
away." GG elaborated on this apparent detour explanation, saying that the
staircase path goes "up and down, up and down" whereas "B's [diagonal] going
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just straight."  Then, he demonstrated the compression argument again by
pulling out the staircase.  The smooth explanation from one intuition into the
other suggests that GG integrated both criteria in his understanding of this path
comparison between the diagonal path and the staircase path.  Converting each
corner into a line segment can be both "pulling it out" and changing the detours
into straight roads.  GG may have recognized that both explanations of
"straightening the corners" were essentially isomorphic.  Further research may
address this conjecture that through the co-incidence and co-occurence of using
two intuitions, a person may have the opportunity to build his or her
understanding.

Most students did not utilize supportive intuitions together in subsequent
comparisons.  However, one student may have noticed the isomorphism
between the detour and the compression intuitions.   If so, multiple intuitions
that support one another  provide opportunities for the student to relate the
intuitions to one another, thereby building more complex knowledge.

4.4 SUMMARY OF RESULTS
When asked to solve these geometry problems, these students initially

used intuitions that originated from everyday experiences.   However, they did
not systematically apply them to every path comparison.   In addition to
bouncing from one intuition to another to compare paths, these students
demonstrated the fragmented nature of their intuition through their extremely
limited applications and their "waffling". Moreover, students produced both
correct and incorrect results by using their intuitive concepts.  Despite their
intuitions' inadequacies, these students continued using them at the beginning of
the second session.  Thus, their prior intuitions had a higher priority  than their
co-existing successful competitor, the align & compare method that they would
later use to solve the problem.  

Some students applied several intuitions to a single problem leading to
either conflicts or mutually supported conclusions.  Although they typically
resolved their conflicts by choosing one intuition over another, the "losing"
intuition could still reappear as the criterion for solving another path
comparison.  Constraints about the transitive property of equalities and partial
orders also help resolve conflicts.   Most students who found converging
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intuitions that mutually supported one another simply let them drift apart from
their ephemeral, chance encounter.  However, one student may have built more
lasting connections between two of his intuitions to form a larger piece of
knowledge.

5.CONCLUSION
In this paper, I have demonstrated the utility as well as the inadequacies of

some intuitions.  They are not only "misconceptions" or "learning barriers"
(Hawkins et al. 1981), but can be productive elements of knowledge.  Instead of
being told that particular intuitions (perhaps knowledge in general) have been
labeled as correct or incorrect, a student may learn more by assessing them with
more sophisticated criteria such as range of applicability, ease of use, and
coherence with other ideas.  

Intuitions exist in pieces, unlike the theories of experts. Since they have an
independent source of reinforcement through everyday activities, they may co-
exist with other standard mathematical knowledge despite instructional attempts
to uproot them.  

What role, then, should intuitions play in learning and development?  One
possibility is to help students recognize and delineate an intuition's range of
application.  In addition, students may learn to link an intuition to an appropriate
mathematical concept or procedure, so that the intuitive concepts act as pointers
to formal mathematics.  Furthermore, since these intuitions were useful in some
situations, it may be possible to build formal mathematical understanding on the
foundations of carefully selected intuitions.  "Complexity", for instance, seems to
precede quantitative reasoning.  Some intuitions seem intimately tied to one
another.  For example, what is the relationship between "straightness" and the
other intuitions:  compression, detour, and complexity?

Finally, this study highlights the potential complications of using even
simple representations.  As this study of simple lines showed, students can use
their intuitions to interpret a line as both a string and a moving object.  Since
students may well use these intuitions to understand the vast number of
representations that they face in a mathematics classroom, teachers would
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benefit from considering these different perspectives.  Lines are not just lines,
students imbue them with meaning.
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Appendix A: Coding Scheme

Compression
Unfolds a path.  The path is compressed so it's actually longer than it
seems.  Think of the line as a string and pull it out.

Detour
A path is doing something else instead of going to the destination.
Wanders away from the destination instead of moving towards it.  The
path detours or goes out of the way.  A path turns and wastes space.

Complexity
A path has more of something, like lines, and is longer.  Complex paths
have more components and are therefore, longer.

Straightness
The straight line path is the shortest.  A particular path is straighter than
another path and is therefore shorter.

Analysis by Parts
         Subtypes

A's vertical segment is (almost) as long as B.
convert the paths into straight lines & compare
convert each part into a number (measure) & add
match (by rotating) and see what's left over
align corresponding horizontal and vertical segments with one another
and see what's left over

V   Visual
It looks like it.

O   Other



32

Appendix B: Instruction Script

[ ... ] indicates a possible student response.

(Take out graph paper pad, string, scissors, tacks, 5 index cards, two markers, a
pencil, and an eraser)

You can use some of these materials to check your answers.  Please tell me what
you are thinking as you're working.

[Student measures and gathers data]

(If the student doesn't write down her data, say "You may want to
write that down.  You probably don't want to do it again if you
forget")

(If the student isn't trying to be precise, the lengths were chosen so that
measurement errors tend to cancel.  )

How do you explain this result?

[I don't know.]

Can you change C so that it looks like A?

Do you see any relationship between the parts of A (L-path) and
the parts of C (staircase path)?
[No.]

How do the vertical, up-down segments compare?
[I don't know.]

How long are they?


