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HISTORICAL AND CONCEPTUAL ANALYSIS AS FOUNDATIONS
FOR CURRICULUM: MULTIPLICATIVE STRUCTURE AS A CASE

Jean Schmittau
State University of New York at Binghamton (USA)

     William James wrote in "The World We Live In":

     Out of time we cut "days" and "nights",
"summers" and "winters."  We say what each part of
the sensible continuum is, and all these abstract
whats are concepts.
    The intellectual life of man consists almost
wholly in his substitution of a conceptual order
for the perceptual order in which his experience
originally comes.

     Perhaps no discipline exemplifies the conceptual order

of which James writes better than mathematics, whose concepts

cannot be detected at the surface of the world of form, but

require the development of a theoretical mode of thought.

Mathematics concepts are typically of the type designated by

Vygotsky as "scientific" rather than "everyday";  they are

most often the subject of school instruction rather than the

result of environmental interaction; and unlike everyday

concepts which can be spontaneously constructed, they require

pedagogical mediation for their appropriation.

     When pedagogical mediation is inadequate, learning is

impeded.  The nature and extent of pedagogical mediation is

determined through a genetic analysis (Davydov, 1972/1990),

which encompasses both an epistemological analysis of the

sociocultural construction of the concept as an historical

product, and a psychological analysis which determines the
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requisite actions through which the concept may be

individually appropriated by the student.  Such analyses, of

course, have not characterized mathematics curriculum

construction in the United States, which has been subject to

the influences of a marriage of convenience between formalism

in mathematics and behaviorism in psychology.

HISTORICAL AND CONCEPTUAL ANALYSIS IN THE CONSTRUCTION
OF A CURRICULUM FOR THE CONCEPT OF REAL NUMBER

     An excellent example is provided by the concept of

number, one of the most fundamental in the mathematics

curriculum.  In the United States, our approach has been to

build on children's spontaneously constructed counting

sequences (since many children come to school with some

ability to count, even if only by rote), with the result that

after reinforcement through several years of exclusive

emphasis, the counting numbers come to constitute the "real"

numbers for the child.  When fractions, which cannot be

generated through the activity of counting, are introduced,

the child's schema for number which by this time is firmly

entrenched, must be reconstructed to encompass the new

numbers.  In practice, such a reconstruction constitutes a

Herculean cognitive task which is rarely accomplished,

prompting Skemp (1987) to comment that even among adults,

there are few who really understand fractions.

     Further, the necessity of introducing fractions into a

schema for number predicated on cardinality results
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ultimately in an attempt to connect the two types of numbers

formally, by defining the fraction as a quotient of two

counting numbers.  In my research with students from

elementary school through the university, both in the United

States and in the former Soviet Union, I have not found a

single instance in which the psychological structure of a

mathematics concept reflected a formal linkage with other

concepts to which it was mathematically related (Schmittau,

1991a).  In practice, it appears that either such concepts

are meaningfully connected (that is, integratively reconciled

within the cognitive structure) or they are the products of

rote learning and hence, are not connected at all (See

Ausubel, Novak, & Hanesian, 1978).

     If even a rudimentary genetic analysis of the type

advocated by Davydov were carried out, it would become

obvious that building the concept of number on the results of

counting is just about the worst way to teach the concept,

and one that might be expected to continue to interfere with

the meaningful learning of mathematics for many years to come

(See Schmittau, 1988, 1991b).  To understand this, however,

it is necessary to consult the history of mathematics, which

provides a cognitive record of the sociocultural construction

of the real numbers.

     The ancient Greeks, whose influence on the development

of mathematics in the west has been pervasive, separated the

products of counting from the products of measurement.  They

considered the former to be "numbers", but regarded the
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latter only as "magnitudes".  Consequently, although they

could quite precisely determine √2 as the diagonal of a unit

square, and even the sum √2 + 1 by the combination of the

diagonal with the length of one of the sides, they did not

consider these to be numbers.  It required two thousand years

to unite both the products of counting and the products of

measurement into the concept of the real numbers, represnted

by the continuous number line.  Indeed, Kline (1959) compares

the historical introduction of the irrational "number" to the

introduction of "giraffe" into a concept of "animal"

predicated on dogs and cows.

     The following quote from Stifel (1544, cited in Kline,

1972) reveals the ongoing struggle with the concept of

irrational numbers occurring more than fifteen hundred years

after the Greeks had separated the contexts in which

irrational and counting numbers arose. "Since in proving

geometrical figures, when rational numbers fail us irrational

numbers take their place and prove exactly those things which

rational numbers could not prove ... we are moved and

compelled to assert that they truly are numbers" (p.251).

However, in attempting to represent irrationals as decimals,

Stifel notes that "they flee away perpetually, so that not

one of them can be apprehended precisely in itself" (p. 251),

and therefore, he concludes that the irrationals are lacking

in the precision requisite for status as numbers.  Stifel

expressed irrationals as decimals, but excluded them from the

real numbers, asserting that the reals consisted of whole
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numbers and fractions.  Here we see evidence of the

difficulty involved in enlarging the concept of number.  Like

the giraffe in Kline's example which did not quite fit with a

concept of animal based on dogs and cows, the irrational did

not fit a concept of number based upon whole numbers and (by

this time) fractions.

     With irrationals (and with negative numbers as well) we

are confronted with a kind of cognitive "ontogeny

recapitulates phylogeny", as their inclusion as numbers

requires reconceptualization of the conceptual schemas of our

students in a matter of ten to twelve years commensurate with

those historically requiring two millenia, all as a result of

developing and reinforcing in the early school years a

concept of number predicated upon cardinality, and thereby

establishing a conceptual basis for the category of number

too narrow to support its subsequent development.  A

conceptual framework predicated on cardinality is inadequate

for the subsumption--even if correlative (Ausubel et al,

1978)--of fractions and irrationals, since these are derived

from measurement rather than from counting.  The result is a

pedagogical dilemma of considerable proportions.

     Davydov (1975) has resolved this dilemma by beginning in

the first grade to stretch the concept of number beyond

cardinality.  His materials develop number from the activity

of measurement rather than from counting.  Figure 1

illustrates the task of measuring a line segment by a portion
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of itself arbitrarily designated as a unit.  The result is a

counting number "6".

     |------|------|------|------|------|------|
      -unit-

              Measure = 6

Figure 1. Measurement of a Line Segment Resulting in a
          Counting Number             

     In Figure 2, the situation is complicated by the fact

that after laying off the unit six times, there is a

remainder of unknown measure "r" which must be compared to

the unit in order to determine its fractional value.  If the

remainder can be laid off on the unit an integral number, say

"n", of times (as in Figure 2), then the measure of the

segment is 6 + 1/n.  If the remainder cannot be laid off on

the unit an integral number of times, then the process

continues, with each new remainder being compared to the

previous remainder functioning as the new "unit" until such a

remainder is found.  If the process continues to infinity and

no such remainder exists, then the incommensurability of the

original unit and the line segment is confirmed, and the

measure of the segment is an irrational number.

     Thus, counting numbers, fractions, and irrationals can

be seen to arise naturally as the results of measurement.
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      |------|------|------|------|------|------|--
       -unit-                                    -r-

        r
      |--
           r
         --
            r
           --
      |------|
        unit
                       Measure = 6 1/3

Figure 2. Measurement of a Line Segment Resulting in a
          Fraction

     Measurement then, rather than counting, provides an

initial basis for the category of number sufficient to

provide for its subsequent development without the necessity

of successive reconceptualizations.  This is a factor of

enormous psychological consequence (See Skemp, 1987).

THE CASE OF MULTIPLICATIVE STRUCTURE

     That this is the case became obvious in our research,

conducted between 1988 and 1991, into the psychological

structure of such a fundamental mathematical category as

multiplication.  The differences between American students'

conceptualizations of this category, and those of Russian

students using materials developed by Davydov and his

colleague, L.K. Maksimov, were profound.  For the Americans,

who were secondary or university students, multiplication was

invariably conceptualized as the repeated addition of
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(generally small) counting numbers.  When the U.S. students

were asked how they saw the algebraic formulation of the

product of two real numbers "ab" as multiplication, those for

whom the instance had any meaning at all substituted small

whole numbers for "a" and "b", thereby subsuming the

generalized product into their schema for multiplication

predicated on cardinality.  By way of contrast, the Russian

students (from the fourth through the tenth form)

conceptualized multiplication in its most abstract and

generalized sense.  Figure 3 shows a typical model drawn by

children as early as the fourth form, which depicts "a"

repeating "b" times.

              |_a_|_a_| . . .|_a_|
              .                 .
                .              .
                  .          .
                     .   .

                    b times

Figure 3.  Russian Pupils' Model of "a.b"

     When the students were presented with an example of a

binomial product, the results were similar.  The U.S.

students had been taught to find this product by multiplying

the first, outer, inner, and last terms of the respective

binomials (signified by the acronym, "FOIL").  Many had no

idea how or why this process worked to produce the desired
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result.  Those for whom the multiplication of binomials had

any meaning at all substituted (mostly small) counting

numbers for x and y.  The most popular choices for x and y

among university students were "2" and "1".  The Russian

students, however, conceptualized the binomial product as

they did the product of monomials, in its most abstract and

generalized sense.  The model given by a fourth form child

appears in Figure 4.  The child first drew the scheme on the

left and explained the required actions and the manner in

which they produced the product.  Then he substituted numbers

for x and y to illustrate how this happened in a particular

case (thereby demonstrating "the ascent from the abstract to

the concrete" advocated by Davydov, 1972/1992).

            (2.x + y)(x + 3.y) = (2.4 + 2)(4 + 3.2)
              \/   /  \   \/     \ /   /  \   \ /
               o  /    \   o      8   /    \   6
               \ /      \ /        \ /      \ /
                o        o         10        10
                 \      /            \      /
                   \  /                \  /
                     o                  100

Figure 4. Model of Binomial Multiplication by Russian
          Fourth Form Pupil

     Every Russian child who had used Davydov or Maksimov's

materials during their first three years of schooling was

able to extend his/her knowledge validly and accurately into

this new domain despite the fact that those in the fourth and

fifth forms had not previously worked with binomial
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multiplication.  The effect of using Davydov's materials

during their first three years of schooling persisted for

Russian ninth and tenth form students, despite the fact that

they had experienced more or less traditional forms of

mathematics instruction during the intervening years.  The

geometric representation appearing in Figure 5 is an example

of the conceptualization of binomial multiplication

demonstrated by these upper secondary students.  It

illustrates a strip of dimensions 2x + y by 1, repeating x +

3y times.

           x       3y              x      3y
         ______________          ______________
        |     |        |        ||    |        |
    2x  | 2x  |   6xy  |     2x ||    |        |
        |     |        |        ||    |        |
        ---------------         ||----|--------|
        |     |        |        ||    |        |
     y  | xy  |   3y2  |      y ||    |        |
        |______________|        ||____|________|
                                1

Figure 5. Model of Binomial Multiplication by Russian
          Ninth Form Pupil

     Thus, the importance of the initial development of

categories is underscored, as initially instantiated schemas

tend to be perpetuated.  The Russian students' initial

formation provided greater conceptual coherence, adequate to

support the subsequent development of the category.  That of

the U.S. students did not.  (For a further description of the
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abilities demonstrated by the Russian children, see

Schmittau, 1993).

    These studies of the psychological structure of

multiplication were extended in our research to include

exponentiation, which in the United States is taught as

repeated multiplication, just as multiplication is taught as

repeated addition.  Thus, high school textbooks in the U.S.

typically begin with examples such as

               34 = 3 x 3 x 3 x 3    

and explain that the exponent denotes the number of times 3

is used as a factor.  When we asked eight U.S. university

students (two of whom were mathematics majors) for the

meaning of "exponent", half of those who had majored in

disciplines other than mathematics identified the meaning as

"repeated multiplication" of positive integers.  The others

were unable to provide any meaning, however, designating the

exponent merely as "a number which is written in the upper

right hand corner next to another number".  For these

students a "cognitive entropy" of sorts was in evidence;

whatever meaning multiplication as repeated addition of

counting numbers had had for them was subsequently "damped

out" with the extension to exponentiation as the repeated

multiplication of counting numbers.  In the end, the semantic

content was reduced to nothing more than a syntactic cue.

     The definition of exponentiation as repeated

multiplication presents other problems, however.  If 34
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designates the repetition of three as a factor four times,

what then is the meaning of 30, 3-2, 32/3, and 3√2 ?  In

order to establish some sort of meaning for non-positive and

non-integral exponents, formal connections are typically

presented in U.S. textbooks.  It is asserted, for example,

that

        34   3 x 3 x 3 x 3
        -- = -------------  =  3

4-2 = 32,

        3
2    3 x 3  

so that the exponent of three resulting from the division is

obtained by subtracting the number of times three is used as

a factor in the denominator from the number of times three

appears as a factor in the numerator.  If the numerator and

denominator are switched in the previous example, the result

is

           32
          ___ =  32-4 = 3-2 .
           34

In this way, negative integer exponents are formally

generated from positive integer exponents.

     Zero as an exponent occurs when the numerator and

denominator are the same power of the base.  For example,

        32

       --- =  32-2 = 30 = 1.
        32

     Fractional exponents are defined so that 3a/b = b√3a.

Once the above exponents have been formally posited, students



15

work many practice exercises with them.  Typically,

exponential functions are introduced later, often in a

subsequent chapter, where students use the exponents

developed formally (as above) to plot exponential functions

such as y = 3x, and then approximate irrational exponents

from the resulting graph.  Applied problems involving

phenomena such as compound interest and population growth

follow.

     If the concepts involved in exponentiation and

exponential functions are subjected to conceptual analysis,

however, the notion of function emerges as an important

underlying concept.  If the historical development of the

concept of function is then analyzed, it is found that it

began to develop around the time of Galileo, out of attempts

to express motion mathematically, and eventually to express

the interrelationship of the variables involved in motion

graphically.  This effort to express motion mathematically

provided a continuing impetus for the historical development

of the concept.

     The exponential function, of course, expresses the

motion of growth, whether it be the growth of money when

interest is compounded, the growth of bacteria or other

populations, or similar natural growth situations.  Unlike

the historical development of the concept of number, which

required successive reconceptualizations due to the

inadequacy of its initial cardinal base, the historical

development of the concept of exponentiation--although it
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began with positive integer exponents--proceeded through

extensions and refinements.   Thus, historical and conceptual

analysis suggests beginning the development of the concept of

exponent with the exponential function, and allowing the full

range of real number exponents to emerge from the attempt to

solve a problem in which it is required to express

mathematically (both graphically and as a function) a

situation of continuous growth. (It is important that the

growth be continuous in order to provide for the emergence of

non-integral exponents.)   These considerations prompted the

design of a teaching experiment which effectively reversed

the order in which exponentiation and exponential functions

are usually taught in U.S. classrooms.  The design of this

experiment appears within the larger context of the study

described below.

A STUDY OF THE CONCEPTUALIZATION OF EXPONENTIATION

     The study of exponential understanding was conducted

with eight university students, who after responding to the

question concerning the meaning of exponentiation mentioned

above, were given the set of exponential exercises that

appears below, for which they were asked to provide the

answers.
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        8 2/3 =

        22
        --  =
        20

        9 -2 =

        2 √2 =

        25 3/2 =

        2 -6  =

        62 . 60 =

        16 5/4  =

        (-4) -3  =

        9 2.5  =

Table 1.  Set of Exponential Exercises.

     The students were also given a graph of y = 2x and asked

to locate the points for which f(x) = 20, f(x) = 22/3, f(x) =

2√2, and f(x) = 2-3.  In order to locate the last of these

points, the student had to extrapolate the curve beyond the

domain presented on the graph.  Finally, the student was

asked to solve two applied problems presented in Table 2. A
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clinical interview was conducted during which the student was

asked to explain the solution of the tasks described

above.  This portion of the investigation was diagnostic.
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Applied Problem #1.  You accept a position in a lab and
are assigned the job of checking bacteria cultures.  On
Monday you arrive and check the first culture.  According to
your best calculation it contains 2000 bacteria.  You get
busy and forget to check it on Tuesday.  On Wednesday you
estimate that there are now 4500 bacteria.  Your boss wants
to know how many were there on Tuesday, so you check with a
co-worker and are told that bacteria populations increase
exponentially with time.  Is this information of any use to
you in trying to answer your boss' question?  In predicting
how many bacteria will be in the culture on Friday?

Applied Problem #@.  Mrs. Jones learns of an investment
which will pay 10% on her money with guaranteed safety.
Before investing she wants to know when her money will
double.  Can you help her?

Table 2. Applied Problems Involving Exponentiation

      During a subsequent interview, the student was asked to

complete the problem on plant growth presented in Figure 6.

S/he was provided with a drawing of the growth pattern on

successive days, and asked to answer the required questions.

Obviously, the plant growth problem represented an idealized

situation designed to promote exploration of the relevant

mathematical structures, rather than to reflect botanical

reality.

Plant Growth Problem Questions

At 8:00 Sunday morning a child notices a small plant growing
near the steps of his house.  He decides to measure it and
finds that it is 3cm in height.  He measures it again on
Monday morning at 8:00 A.M. and finds it to be 9cm high.  He
decides to measure it at the same time on ensuing mornings.
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Tuesday morning's measurement is 27cm and Wednesday's is
81cm.

Assuming that this growth pattern is descriptive of the
entire growth history of the plant, how tall was it on the
previous Saturday morning at eight o'clock?  Why do you think
he did not notice it?

How tall was it the previous Friday morning at 8:00?  The
previous Thursday at the same time?

If we want to show that Sunday was the first day the child
measured the plant and be consistent with our numbering
scheme, how should we number "Days" Saturday, Friday, and
Thursday?

How tall was it at 8:00 the previous Saturday night?  At 8:00
Sunday night?  At 4:00 p.m. on Sunday?

When will the plant be 30 cm tall?  100cm tall? (Assume that
it will grow to the size of a small tree).
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                                              \|/
                                |

                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                         \|/   |
                                          |    |
                                          |    |
                                          |    |
                                          |    |
                                          |    |
                                   \|/    |    |
                                    |     |    |
________________.________\|/________|_____|____|__

Day                       1         2     3    4

                         Sun        M     T    W
                         8AM       8AM   8AM  8AM

Figure 6. Plant Growth Problem

     This portion of the investigation was designed as a

teaching experiment, with the interviewer working with the

student in the zone of proximal development with respect to

the concept, and providing only those questions necessary to

create cognitive dissonance if the student failed to probe

the full conceptual range of the problem.
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     After the completion of the "plant growth" problem

tasks, the student was asked to "re-visit" the problems

presented in Tables 1 and 2 and the graph of y = 2x.  The

results obtained before and after working the "plant growth"

problem are presented in Tables 3 and 4, respectively.  In

addition to their improved performance on the tasks

chronicled in Tables 3 and 4, all subjects gave evidence of

greater insight into the two applied problems as well.
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                            EXPONENTS

           Number Correct

                          Before    After

        8 2/3                2      8

        22
        --                   5      8
        20

        9 -2                 3      8

        2 √2                 1      4

        25 3/2               3      8

        2 -6                 3      8

        62 . 60              5      8

        16 5/4               2      8

        (-4) -3              2      7

        9 2.5                2      7
                            ---    ---
                            28     70

Table 3. Results for Exponential Exercises After
         Completing Plant Growth Problem
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                GRAPH OF EXPONENTIAL FUNCTION

                          Number Correct

        Points            Before   After

       f(x) =

         20                  5       8

         2 2/3               3       7

         2 √2                2       6

         2 -3                4       6

                            ---     ---
                            14      27

Table 4. Results for Exponential Graph Questions After
         Completing Plant Growth Problem

     No explanation had been given of exponents, graphing, or

applications during the teaching experiment.  The student had

simply worked through the questions asked in the "plant

growth" problem.  However, in so doing, s/he had been

required to construct the meanings not only of positive

integer exponents (meanings which, significantly, did not

reflect "repeated multiplication"), but of negative integer,

zero, and fractional exponents as well.  Further, the student

was required to develop the category holistically, so that

the various types of exponents acquired their meaning not

independently, and not through a linear formal generation
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from the repeated multiplication of counting numbers, but in

their structural interrelatedness with all other constituents

of the category.  See Figure 7, where the results of the

progressive answers to all but the final questions concerning

the plant's growth are summarized.
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                                              \|/
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                         \|/   |
                                          |    |
                                          |    |
                                          |    |
                                          |    |
                                          |    |
                                   \|/    |    |
                                    |     |    |
________________.________\|/________|_____|____|_

Ht. 3-2   3-1  30  31/2  31  33/2  32    33   34  
(cm)
     |     |    |    |    |    |    |     |    |
     |     |    |    |    |    |    |     |    |
                     |         |
Day -2    -1    0   1/2   1   3/2   2     3    4
                     |         |
                     |         |
Thurs    Fri   Sat       Sun       Mon   Tues  Wed
 8AM     8AM   8AM       8AM       8AM   8AM   8AM
                     |         |
                     |         |
                    Sat       Sun
                    8PM       8PM

Figure 7. Partial Results for Plant Growth Problem

     The application of category theory to the genesis of

mathematical categories reveals the primary cognitive
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difference between their formal and conceptual construction.

The generation of number from counting, of multiplication

from repeated addition of counting numbers, and of

exponentiation from repeated multiplication, are all

accomplished through the introduction of formal connections

(often in the form of rules or definitions such as b√na = n
a/b).  The result is a generative metonymic category

structure which Lakoff (1987) reports is found only rarely in

naturalistic settings.  The holistic formation of such

categories, however, reveals their conceptual essence and

structural interrelatedness, thereby enabling their

appropriation by students through what Ausubel termed

"meaningful learning"  (See Ausubel et al, 1978).

     Before working the "plant growth" problem, students

offered the following comments:

 S: They [exponents] tell you how many times you use [the
exponent] as a factor...

 I: So 22/3 tells you to use 2 as a factor 2/3 times?
 S: That's what I would think...
 I: How do you use something as a factor 2/3 times?
 S: Well, I would just take 2/3 of that number [an obvious

confusion of exponentiation with simple multiplication].

     Another student, a mathematics minor, said she was "not

even sure what a function is", then described 23 as "2 times

2 times 2", but added, "I can't imagine something multiplied

by itself 2/3 times."  She continued:

23  is easy. And I remember the negative exponents mean
the reciprocal.  I feel comfortable with that to the
same degree as I feel comfortable with 20, but it's
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something I remember by rote memory.  I can't say I
truly understand the concept....2x I can feel
comfortable with because I think of x as being a whole
number. But I'm uncomfortable with that because I
realize the x could be something like 2/3. And even
worse would be 2√2.  I can't understand at all how you
could find √2 of a number. To multiply it by itself √2
times just seems really weird.

     One of the two mathematics majors in the group said

initially that every type of number used as an exponent meant

something different, an obvious reflection of the formal

generation of exponents in school settings.

I: Are you saying that ... a positive integer as an exponent
means one thing [and] if I have a fraction [as an
exponent] it means another thing?

S: I guess that's the way it is, yes.

     Virtually all the students felt that working the "plant

growth" problem had enabled them to attain to a much

different and more integrated understanding of

exponentiation.  In some cases the differences between the

initial and final performance on the problem tasks was

dramatic.  One student who described himself as a "near

perfect, 100% student in math" until calculus, missed nearly

half the exponential exercises and location of points on the

graph.  He had very little insight into the two applied

problems.  After working through the "plant growth" problem,

he got all of these problems correct.

     The results were similar for two other students (non-

mathematics majors like the student above), who missed
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virtually all of the exponential exercises and the location

of points on the graph.  One of them admitted to having

developed a "total aversion to math after the eleventh grade"

and consequently, taking no mathematics in college.  The

other described 20 as equaling zero and meaning "2 used as a

factor zero times".  Fractional, negative, and irrational

exponents had no meaning at all.  After completing the "plant

growth" problem, both of these students corrected all of

their mistakes.  The second student was amazed that she had

gone from having all the answers incorrect to getting them

all correct. In working through the "plant growth" problem

she commented, "I can't believe this tiny problem has gone

through so many levels [of understanding]."  At the end of

the interview, the interviewer commented:

I:  Now you notice after doing this problem with the plant,
the little plant problem, you went back and corrected
everything on these three sheets [i.e., on Tables 2,3,
and 4].

S:  I know.  That's amazing.  I want this to sink in. I'm
sad that I didn't know this [before working the plant
problem].

     The two mathematics majors had virtually all the

exponential exercises and graphing points located correctly.

However, they still had some difficulties with the two

applied problems.  One had a great deal of insight into the

source of the difficulty she experienced.  She felt that her

"meaning was rule-bound" and said she "tried hard not to

worry about meaning because it can get in the way of

efficiency".  However, she had taken a graduate mathematics
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course in which some of the concepts inherent in the "plant

growth" problem had been dealt with.  She had also taught the

topic as a teaching assistant in an undergraduate mathematics

course. A portion of her initial interview follows.

I:  What is an exponent?
S:  Having taught that, I began with the idea of the

historical development of what exponents were and that
involved first the whole numbers.  It began with the
idea of natural numbers. They didn't even use the term
"exponent".  For instance, for 20 they would say "2
index zero"....Newton was much more explicit about using
exponents in the way we think of using exponents --
fractional and negative-- ...[with] the idea of
extending them from what was known and trying to make a
consistent system.

I:  What was known?
S:  Even getting into the history of logarithms, we formed

an association of an arithmetic progression with a
geometric progression.  The exponents formed the
arithmetic progression and the number itself raised to
the exponent formed the geometric progression.  That's
how they began to see how fractions satisfied the same
consistency....As long as they formed a consistent
pattern, you don't worry so much about what the meaning
is.

I:  So is that your understanding of what an exponent is, an
arithmetic progression associated with a geometric
progression?

S:  Right.
I:  So it wouldn't make any difference to you if you saw 23

or 20 or 22/3 or 2-3 ? You would see them along the
continuum of real numbers in the geometric sequence?

S:  Right.
I:  And you would see the exponents 3, 0, -3, and 2/3 as an

arithmetic sequence also along the continuum of real
numbers?

S:  Right.
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     In spite of her understanding of the historical

development of exponents as described above, she had not

connected them with the problem of expressing a growth

function.  This the plant problem (by conceptually

"telescoping" the historical development) required her to do.

The problem was designed also to emphasize the arithmetic and

geometric sequences which as this student correctly noted,

functioned prominently in the historical construction of

exponentiation.  The numbers of the "days" in question

constitute an arithmetic scale, while those of the "heights"

constitute a geometric one.  Nevertheless, when this student

attempted to determine when the plant would be 30cm tall, she

abandoned this "arithmetic sequence/geometric sequence" model

and resorted to using logarithms.  She observed a conceptual

"gap" here, however, and said she noticed that such a gap

occurred for her students also when they made the switch to

logarithms to solve such problems in the classroom.  What was

interesting is that while she knew about the historical

"arithmetic/geometric" sequence model, she did not actually

use it!  Since she "knew" that 31/2 is √3, that 33/2 is √33,

and that the height of the plant at 4:00 p.m. Sunday would be

31/3 which equaled 3√3, she did not construct these meanings

as the other students did.

     The other students were required to notice that Day #1/2

(Saturday at 8:00 p.m.) occurred between Day #0 and Day #1

(Saturday and Sunday at 8:00 a.m., respectively), and to

think about the fact that 30 x k = 31/2, while at the same
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time 31/2 x k = 31.  But 30 x 3 = 31. Hence, k x k = 3 and k

must, therefore, be √3.  Now, since 30 x k = 31/2, and 30 =1

while k = √3, 30  x k = 31/2 can be expressed as 1 x √3 =

31/2.  Hence, 31/2 = √3.  Similar reasoning was required for

the construction of the meaning of 33/2 as √33 and 31/3 as
3√3.   

     This student, as a mathematics major, simply remembered

that 31/2 was √3, for example, undoubtedly from the formal

development of fractional exponents, and her conceptual "gap"

became obvious to her when she approached the task of finding

the time at which the plant would be 30cm tall.  Thus, it is

worth noting that during the historical development of

exponentiation, particular attention was devoted to the

arithmetic and geometric scales which appear on the x and y

axes, respectively, but abstracted from the graphic

representation of the function and juxtaposed in such a way

as to facilitate the consideration of their relationship to

one another.  In working the "plant growth" problem the

student is similarly required to juxtapose these scales

(representing "day" and "height") below the drawing and to

constantly refer to them as indicated in Figure 7. In

addition, however, the student must continually refer these

scales back to the problem in its original context, and

thereby  connect the exponentials s/he constructs with the

exponential function itself and its meaning within the

problem context.
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     It is important to note also that if the plant's heights

are connected, the graph of y = 3x results.  Thus, all

essential components of the exponential function, its

graphical representation, and the real-valued exponents

themselves are seen in their structural interrelatedness

within the context of a single problem reflecting the

movement of continuous growth.

IMPLICATIONS

     As Davydov (1972/1990) has pointed out, a genetic

analysis encompasses both an epistemological and a

psychological analysis.  The former is concerned with the

development of the concept as a sociocultural construct,

while the latter focuses on the requisite cognitive actions

required for the individual appropriation of the concept.

This study, the results obtained from the analysis of U.S.

and Russian students' conceptualizations of multiplication,

and Davydov's (1975) work with the concept of number as well,

suggest that it is not sufficient to simply replicate in the

classroom the manner in which a concept developed

historically (a practice to which U.S. educators are

particularly prone on those rare relatively occasions when

historical analysis is invoked at all).  The historical

development of the concept may not be worthy of replication;

it may be flawed with respect to the coherence required for

an adequate conceptualization of the category (as in the case

of the historical development of the concept of real number).
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It is for this reason that the historical analysis must be

accompanied by a conceptual analysis (a research method which

in the United States has unfortunately been largely relegated

to the domain of philosophy).

     Exponents provide an excellent illustration of

abbreviated semiotic forms of thought which absorb into

themselves the genesis of the concept they represent, thereby

necessitating, as Davydov (1972/1988) has pointed out, a

genetic analysis in order "to see in [these] abbreviated

forms of thought its original course ... [and to] uncover the

laws and rules of this abbreviating and then `recapitulate'

the full structure of the processes of thought being

analyzed" (p. 179).   In the teaching experiment above, the

student is required to recapitulate on an individual level

the conceptual development of exponentiation reflected in its

historical construction.  The results of accomplishing the

task set by this single problem corroborate Davydov's

(1972/1990) contention that when the epistemological and

psychological analyses are adequately accomplished, and the

requisite pedagogical mediation is designed, the student may

appropriate the concept by working one or at most a few

problems.  The pages of drill found so commonly in U.S.

classrooms reflect the inadequacy of concept development in

these classrooms.

     The "plant growth" problem described above represents a

task of considerable conceptual complexity.  For this reason,

although the results obtained after working it suggest that
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it was effective in accomplishing the task for which it was

designed, it would seem desirable if such problems are used

to introduce exponentiation in the classroom, to present

students with perhaps one or two additional problems of

similar conceptual complexity, in order to provide further

opportunity for the mastery of the requisite conceptual

connections.

     Davydov suggests that through genetic analysis and

adequate design of instruction, most students will attain to

the requisite mathematical understandings.  Indeed, in our

study we found that even those students who began with little

understanding advanced considerably in their

conceptualization of exponentiation and exponential functions

through working the plant growth problem.

     Obviously, the "lengthy psychological research"

(Davydov, 1972/1988, p. 196-197) required to restructure the

mathematics curriculum along conceptual lines is not the

"magic bullet" for which educators have been understandably

seeking.  But if through such research, mathematics may be

made as accessible to the many as it presently is to the few,

we can ill afford not to undertake it.
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                                              \|/
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                               |
                                         \|/   |
                                          |    |
                                          |    |
                                          |    |
                                          |    |
                                          |    |
                                   \|/    |    |
                                    |     |    |
________________._______ \|/_______ |_____|____|

Ht. 3-2   3-1  30  31/2  31   33/2  32   33   34
(cm)
     |     |    |    |    |    |    |     |    |
     |     |    |    |    |    |    |     |    |
                     |         |
Day -2    -1    0    |    1    |    2     3    4
                     |         |
                     |         |
   Thur    F   Sat   |   Sun   |    M     T     W
   8AM    8AM  8AM   |   8AM   |   8AM   8AM   8AM
                     |         |
                     |         |
                    Sat       Sun
                    8PM       8PM
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