Third Misconceptions Seminar Proceedings (1993)

Paper Title: Curricular Construction with Vee Heuristics: Linking Scientific Theory and Skill Performance Author: Smith, Blenda E.

Abstract: Educators realize the significance of theory driven critical thinking for students as they learn skill performance in laboratory experiments, technical skills, and practice professions. In order for skill performance to take on rational meaning, the learner needs to be able to identify the specific scientific theory base upon which skill performance is built. Consequently, educators stress connecting underlying scientific theory and skill performance.

Keywords: educational methods, theories, research methodology, theory practice relationship, curriculum design, scientific concepts, vee diagramming (heuristics), learning strategies, quasiexperimental design General School Subject: biological sciences Specific School Subject: physiology Students: college

Macintosh File Name: Smith - Vee Heuristics Release Date: 9-14-1994 I

Publisher: Misconceptions Trust
Publisher Location: Ithaca, NY
Volume Name: The Proceedings of the Third International
 Seminar on Misconceptions and Educational Strategies in
 Science and Mathematics
Publication Year: 1993
Conference Date: August 1-4, 1993
Contact Information (correct as of 12-23-2010):
Web: www.mlrg.org
Email: info@mlrg.org

- A Correct Reference Format: Author, Paper Title in The Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics, Misconceptions Trust: Ithaca, NY (1993).
- Note Bene: This paper is part of a collection that pioneered the electronic distribution of conference proceedings. Academic livelihood depends upon each person extending integrity beyond self-interest. If you pass this paper on to a colleague, please make sure you pass it on intact. A great deal of effort has been invested in bringing you this proceedings, on the part of the many authors and conference organizers. The original publication of this proceedings was supported by a grant from the National Science Foundation, and the

transformation of this collection into a modern format was supported by the Novak-Golton Fund, which is administered by the Department of Education at Cornell University. If you have found this collection to be of value in your work, consider supporting our ability to support you by purchasing a subscription to the collection or joining the Meaningful Learning Research Group.

CURRICULAR CONSTRUCTION WITH VEE HEURISTICS: LINKING SCIENTIFIC THEORY AND SKILL PERFORMANCE Blenda E. Smith, Ph.D., RN State University of New York of Binghamton U.S.A.

Introduction

Educators realize the significance of theory driven critical thinking for students as they learn skill performance in laboratory experiments, technical skills, and practice professions. In order for skill performance to take on rational meaning, the learner needs to be able to identify the specific scientific theory base upon which skill performance is built. Consequently, educators stress connecting underlying scientific theory and skill performance.

Students at the State University of New York at Binghamton's Decker School of Nursing are taught nursing skills in an upper division nursing major after completing two years of prerequisite work including natural sciences courses. Knowledge of physics, anatomy, physiology, biology, microbiology is fundamental to nursing as a practice profession (Smith, 1992). Theoretical input from the sciences should quide nursing students to understand concepts, principles, and theories so as to clarify rationales for nursing practice ("more than mere knowledge of the reasons") (Akinsanya, 1987, p. 272).

In addition to the emphasis on theory driven practice, teaching skills focuses on accurate performance which is essential to safe practice. However, students often are motivated simply to do procedurally driven, rote mode steps of a skill rather than theory driven performance of that skill. Teaching and learning strategies are needed which foster theory driven skill performance.

Theoretical Framework

This paper is based on the cognitive educational theories of Ausubel, Novak & Hanesian (1986) and Novak and

Gowin (1984) which claim (a) meaningful learning occurs when new knowledge is connected to prior knowledge in ways that strongly link the two, and (b) links between theory and practice can be constructed with the use of Vee heuristics.

Although many curricula include prerequisite courses, students often do not make connections between prior course content and present course work. When learning is focused on skill acquisition, learners typically are more comfortable with rote mode performance than recalling and integrating prior theoretical knowledge with the new knowledge.

To guide students to identify and build on scientific theory learned in prerequisite courses, students can be taught skill performance with a strategy that connects theory and practice, namely the Vee heuristic, which concretely identifies the theory and practice components of a given skill. Concepts, principles, theories and philosophies are specified on the left side of the Vee which forms the theory base undergirding practice. The right side of the Vee denotes the actual performance criteria of the skill by recording the event (observing the skill performance), transforming the data (evaluating the performance), making knowledge claims (identifying each step of the skill to be performed), and value claims (validating the worth of the performance). Fundamental to the Vee is the focus question (how to perform a skill) which is answered by the educative event (learning accurate skill performance). The interconnectedness of theory and practice in the Vee reinforces the theory driven nature of the procedure.

Methodology

Research Questions: Are students who are taught the practice of basic skills in a simulated college laboratory setting with Vee heuristics rather than with traditional modes better able to (1) identify the scientific theory base for specific [nursing] skills, and (2) perform basic [nursing] skills in practiced situations.

Research Design: The research was quasi-experimental with a nonequivalent control group design (n=42). Three instructors each taught weekly labs for a semester long nursing practice course in (a) а traditional mode (demonstration, practice, return demonstration), and (b) a treatment mode (demonstration, practice and return demonstration with the discussion of instructor-made Vees about weekly skills). Short answer questionnaires were administered in which students were asked to state the underlying scientific principles for ten skills. Qualitative analysis of answers was based on inclusion of specific theoretical knowledge from the natural sciences. Analysis of variance (SAS general Linear Models Procedure) was used controlling for groups and instructors (see Appendix A). Taped clinical interviews were conducted to collect subjective data from students who learned with Vee heuristics. Return demonstrations of skill performances were studied to see if performance was significantly different for students taught with traditional or treatment modes.

As part of the research, extensive Vee heuristics were produced (as shown in Appendix B) for a semester long basic skills course.

Findings and Implications

Students using Vee heuristics were significantly better able to articulate the scientific principles specifying why actions were appropriate. Students answered ten short answer questions by explaining theoretical principles underlying why certain skills were performed as they were. For example, one question asked "Why do you bend your knees and shift your weight when moving a client up in bed?" Answers ranged from vague replies such as "to be more steady" to clearly articulate understanding of principles such as "bending the knees lowers center of gravity and shifting weight keeps the line of gravity over the base of support both of which increase stability". Analysis of variance for the short

answers (Appendix A) indicates the mean of responses for all ten short answer questions given by all students. Students who learned with Vees gave answers that were significantly better (with a level of significance of p=.005).

TABLE

Analysis of Variance for Short Answers (SAS General Linear Model Procedure) By Group and Instructor (n=42)

Short Answer Questions	\overline{x}_{c}	\overline{x}_t	F	р
1 Body mechanics	2.77	3.65	5.44	.03 *
2 Palpation of pulses	2.77	3.60	5.23	.03 *
3 Orthostatic				
hypotension	2.64	2.70	.02	.90
4 Clean/sterile gloves	3.28	3.40	.07	.79
5 Choice of stethoscope	2.55	3.60	5.97	.02 *
6 Pressure sores	2.59	3.40	3.10	.09
7 Skin inspection	2.41	2.90	4.30	.05 *
8 Blood pressure	3.09	3.75	2.63	.11
9 Percussion technique	2.09	3.35	7.17	.01 *
10 Isolation precautions	3.41	2.65	2.34	.14
Mean of Short Answers	2.76	3.30	8.98	.005 *

* p<.05

(Note: This table also appears as Appendix A.)

Data from taped clinical interviews showed that students felt positively about learning with Vee heuristics (81%). Student response to instructor-made Vee heuristics included such comments as "Vees helped make me see why we do it, and what's not so important", "Vees pointed out exactly why;... I need to know why I do things; used them to review for the mid term", and "since I learn by figuring out, they helped me to see why to do certain things".

Students who learned with Vee heuristics did not perform skills significantly better in return demonstrations. Satisfactory performance of specific skills was necessary to pass the course and proceed to sequential nursing courses. The researcher was not surprised that all students performed skills satisfactorily since students practiced in a mastery learning mode until able to perform skills satisfactorily. What cannot be understood by the educator observing a skill performance is the theoretical meaning underlying the action. Actions with theoretical bases are theory driven rather than procedurally driven. Without an accurate theory base, student could perform steps of a procedure accurately but not understand the significance of the actions. Consequently, when critical thinking and judgement are necessary in actual patient care situations, students performing without theory driven skill performance may chose an unsafe performance alternatives.

The implication for teaching and learning skill performance is that a strategy is available which advances meaningful learning by linking prior scientific knowledge to present learning. Vee heuristics help students see the interrelationships between prerequisite natural science courses and skill performance. The incorporation of theory into practice results in theory driven skill performance.

REFERENCES

- Akinsanya, J. (1987). The life sciences in nursing development of a theoretical model. <u>Journal of Advanced</u> <u>Nursing</u>, <u>12</u>, 267-274.
- Ausubel, D. (1978) <u>Educational psychology</u>. 2nd Ed. New York: Holt, Rinehart & Winston. Reprinted (1986) N.Y.: Wasbel & Peck.
- Gowin, D.B. (1981) <u>Educating</u>. Ithaca: Cornell University Press.
- Novak, J.D. & Gowin, D.B. (1984) <u>Learning how to learn</u>. New York: Cambridge University Press.
- Smith, B. E. (1992) Linking theory and practice in teaching basic nursing skills. Journal of Nursing Education, 31(1), 16-23.

APPENDIX A

TABLE

Analysis of Variance for Short Answers (SAS General Linear Model Procedure) By Group and Instructor (n=42)

Short Answer Questions	x _c	\overline{x}_{t}	F	р
1 Body mechanics	2.77	3.65	5.44	.03 *
2 Palpation of pulses	2.77	3.60	5.23	.03 *
3 Orthostatic				
hypotension	2.64	2.70	.02	.90
4 Clean/sterile gloves	3.28	3.40	.07	.79
5 Choice of stethoscope	2.55	3.60	5.97	.02 *
6 Pressure sores	2.59	3.40	3.10	.09
7 Skin inspection	2.41	2.90	4.30	.05 *
8 Blood pressure	3.09	3.75	2.63	.11
9 Percussion technique	2.09	3.35	7.17	.01 *
10 Isolation precautions	3.41	2.65	2.34	.14
Mean of Short Answers	2.76	3.30	8.98	.005 *
* ~ 05				

* p<.05

APPENDIX B

FOCUS O	UESTION for week #3:
	obilizing a patient safety?
THEORY	PRACTICE
PHILOSOPHY:	VALUE
Humans want to feel	CLAIMS:
healthy and secure.	Anticipating
THEORY:	untoward patient
Theory of gravity.	responses:
Body system homeostasis.	a. avoids injury.
Physiology of cardiovascular	b. validates the
system.	quality of
PRINCIPLES:	nursing
1. Body constantly attempts to	judgments.
maintain homeostasis.	
 Baseline data is necessary 	KNOWLEDGE
to evaluate change	CLAIMS:
accurately.	1. Assess patient's
3. Rapid position change may	color and pulse
<u>not</u> allow for body'	before
homeostatic mechanisms to	"dangling".
occur efficiently enough to	2. Make position
avoid orthostatic hypotension	changes (lying to
[O.H.] 4. O.H. can be a physiologic	sitting to standing)
response of moving from	gradually.
prolonged lying to sitting	3. Assess patient's
"dangling".	dizziness, pulse,
5. O.H. occurs when veins	skin color and
dilate and blood pools in	moistness as soon
muscles, extremities and	as in sitting
abdominal spaces so that	position.
adequate blood supply cannot	4. If untoward
circulate to brain tissues.	effects noted,
6. Inadequate circulating blood	return patient to
volume results in pallor and	lying position
decreased blood pressure.	and check for
7. Body response to decreased	decreased blood
circulation blood volume is	pressure.
an increased heart rate for	5. Wait to repeat
faster circulation of blood	"dangling" more
available.	gradually.
8. Decreased oxygen supply to	
brain tissue results in	TRANSFORMATIONS:
dizziness and fainting.	Performance evaluation.
<u>CONCEPTS:</u> Homeostasis, Blood pooling	evaluation.
Dangle, Vasodilation	RECORDS OF
Orthostatic hypotension	EVENTS:
Dizziness, Fainting, Pallor	Observe nurse.
	'ENT:
	nobilized patient.
	÷

		s #1 [plus 3,5]:
		maintain
	sarety wr	nile working?
THEORY		PRACTICE
PHILOSOPHY:		VALUE CLAIMS:
Nurses value own well	\ /	1. The greater the
being.	1 1	nurse's stability, the
		safer she/he and
<u>THEORY</u> :	1 1	patient are.
Theories of gravity,	1 1	2. Accountability for
physics, physiology.	1 1	safety increases
	1 1	quality of care.
PRINCIPLES:	1 1	
1. A line of gravity	1 1	KNOWLEDGE CLAIMS:
which goes through the		 Keep weight being
base of support		moved
increases stability.		close to you.
2. A broad base of		 Keep elbows near body
support		by lowering side rails
increases stability.		when moving patients.
3. A low center of		3. Shift weight from one
gravity		foot to other when
increases stability.		moving objects.
 Bending knees while 		4. Spread feet to about
standing forces use of		the width of your
thigh muscles.		shoulders when
5. Large muscles can move		moving/lifting.
weight with less		5. Bend knees when
strain		<pre>moving/lifting.</pre>
than small muscles.		6. Use large muscles
6. Energy is needed to		rather than small
overcome inertia.		muscles to (upper arms
7. Lifting to oppose		versus hands, hands
force of gravity uses	11	versus fingers, thighs
more		versus back) move/lift.
energy than pulling.		7. Do not bend, stretch
8. Fulcrums applied to		or twist small back
levers reduce force		muscles.
needed for lifting.		8. Use one continued
CONCEPTS:		smooth move rather than
Safety, (Line of) gravity	11	several short moves.
Base of support (width)	11	9. Pull an object rather
Fulcrum,	N N	than lift it.
Stability	V	
Center of gravity	V	TRANSFORMATIONS:
Muscle strain		Performance evaluation.
Muscles (large, small)		Nurse's report of
Muscle	T	discomfort.
Energy		
Inertia		RECORD OF EVENT:
		Observe nurse working.
	EVENT:	

EVENT: Nurse uses own body when working.

FOCUS QUESTION for week 2 [plus 8]:

How does the nurse

maintain sterile technique?

PRACTICE

THEORY PHILOSOPHY: Healthy state is valued. THEORY: Physics, Biology, Nightingale's nursing theory. PRINCIPLES: (1) A sterile object or field is free of all microorganisms and spores. (2) Unobserved sterile fields cannot be assumed to remain sterile. (3) Gravity causes microorganisms to fall on a sterile field when a non sterile object is held over it. (4) Microorganisms migrate from area to area by direct contact, air currents or gravity. (5) Microorganisms from mouth or nose spread into air with coughing, sneezing or talking. (6) Microorganisms do not move easily from one side of a dry surface to another; rather they travel slowly along the surface. (7) When a sterile field becomes wet, capillary action draws microorganisms from non sterile to sterile surface. CONCEPTS: sterile field, sterile indicators sterile technique/asepsis contamination, sterilization capillary action, air currents microorganisms; spores

migration, gravity

110101101	
VALUE CLAIMS:	
Proper nursing	
actions	

prevent infections and

their spread.

KNOWLEDGE

- CLAIMS:
 (1) Check packages
 labeled sterile for
 expiration
 indicators, tears
 and wetness.
- (2) Face sterile field.
- (3) Keep sterile field no lower than waist or table height.
- (4) Do not reach (or hold unsterile objects) over sterile field.
- (5) Do not touch
 sterile objects or
 fields with non
 sterile/
 contaminated
 objects.
- (6) Do not talk, cough
 or sneeze over
 sterile field.
- (7) Assume one inch border around sterile field is contaminated.
- (8) Discard a sterile field which is wet. <u>TRANSFORMATION</u>: Performance evaluation.

RECORD OF EVENT: Observe nurse using surgical asepsis.

EVENT: Nurse uses surgical asepsis.

FOCUS QUESTION for week #2: How does the nurse maintain a clean environment?

THEORY	PRACTICE
PHILOSOPHY:	VALUE CLAIMS:
Health/cleanliness are	Proper nursing actions
valued.	decreases spread of
Varaouv	germs.
THEORY:	901
Physics, Biology,	KNOWLEDGE CLAIMS:
Nightingale's nursing	(1) Wash hands vigorously
theory.	before and after any
1	patient care, and when
PRINCIPLES:	ever soiled.
(1) Microorganisms are	(2) Work from clean to
present on all matter	dirty areas.
unless adequate	(3) Do not:
sterilization has	a. hold linens against
occurred.	your nurse's
(2) Microorganisms are	uniform.
transferred when	b. shake linens.
touched or moved in air	c. put patient's linen
currents.	on another patient's
(3) Presence of	bed, chair etc.
microorganisms may lead	d. put linens on floor.
to disease.	(4) Maintain isolation
(4) A physical barrier	precautions as follows:
decreases spread of	a. mask near air borne
microorganisms. (5) Friction loosens	and droplet
micro-organisms from a	microorganisms. b. glove if hands are
surface.	in contact with
(6) Soap lowers surface	pathogens.
tension.	c. gown if uniform may
(7) Water flushes	contact pathogens.
loosened micro-	d. use non permeable
organisms away.	material when
	touching blood or
CONCEPTS:	body secretions.
Microorganisms Pathogens	
Physical barriers (gown,	TRANSFORMATION:
gloves, mask)	Performance evaluation.
Isolation precautions	
Clean field	RECORD OF EVENT:
Sterile field	Observe nurse using
Friction	medical asepsis.
Soap	

EVENT: Nurse uses medical asepsis.

FOCUS QUESTION for week #3:

How does nurse safely transfer patient from bed to chair?

THEORY	PRACTICE
PHILOSOPHY:	VALUE CLAIMS:
Nurses are	Being out of bed has
competent care givers.	psychological and
	physical
THEORY:	benefits for patient.
Theories of gravity,	
physiology, physics, and	KNOWLEDGE CLAIMS:
psychology.	1. Explain procedure
	patient.
PRINCIPLES:	2. Position patient in
1. Prior understanding	sitting position with
decreases anxiety.	feet flat on surface.
2. Sitting with feet flat	3. Assess patient for
on floor gives patient	anxiety or orthostatic
sense of balance and	hypertension.
orientation.	4. Place chair so patient can lead with
 Leading with unaffected side allows 	unaffected side and
for "dragging" affected	pull affected side (if
side.	applicable).
4. Use of proper body	5. As patient stands,
mechanics avoids	support his/her weight
injuries.	and shift own weight
5. Hinge joints may flex	from front to back
without control if	foot.
muscles are weak.	6. Maintaining good body
6. Pivoting uses less	mechanics.
energy than walking.	7. Support patient's
7. Abnormal assessments	knees.
indicate health	8. If patient is weak
deviations.	pivot from bed to
CONCEPTED	chair.
<u>CONCEPTS</u> :	 Assess patient after transfer.
Anxiety Body mechanics	transfer.
Hinge joints	TRANSFORMATION:
Pivoting	Performance evaluation.
Leading	
Unaffected side	RECORD OF EVENT:
	Observe nurse moving the
	patient.
	V -

EVENT: Transfer patient from "dangling" position (on edge of bed) to chair.

FOCUS QUESTION	for week #5:
How does the nurse assess the pa THEORY:	
PHILOSOPHY:	VALUE CLAIM:
Nurses are patient advocates.	Assessment and intervention
THEORY :	of health problems avoid
Human anatomy and physiology,	further problems.
Nightingale's theory.	KNOWLEDGE CLAIMS:
PRINCIPLES:	1. Assess skin for progression of ischemis
1. Pressure between bony	and necrosis.
prominences and external	a. red [as capillaries
sources decreases blood supply to skin and	try to compensate for pressure in specific
underlying tissue.	area by dilating]
2. Decreased blood supply to	b. then pale [decreased
skin and underlying tissue [ischemia] leads to cell	<pre>blood supply from pressure]</pre>
and tissue death	c. black [rotted tissue]
[necrosis].	2. Reposition immobile
 Moist skin is more likely to macerate than dry skin. 	patient intermittently at least every two
4. Chapped, overly dry skin	hours.
is likely to crack.	3. Use pillows, rolls and
5. Lesions which break skin	special mattresses to support body parts and
integrity produce pathways for microorganisms to enter	avoid pressure.
the body.	4. Assess skin turgor,
6. Texture of skin may be	contour and moistness.
related to amount of moisture within skin and	 Keep skin clean, dry, supple and separated
underlying tissue.	from other skin
7. Abnormal accumulation of	surfaces.
body fluid in interstitial spaces [edema] may result	6. Document open lesions and follow established
from inadequate venous	protocols for treatment.
circulation [return of	7. Assess for abnormal and
blood to heart].	asymmetric swelling.
 Heart pumping against gravity increases 	 Elevate extremities of immobilized patient
likelihood of edema in	to/or above heart level
extremities positioned	to help avoid dependent
below heart [dependent	edema.
edema].	TRANSFORMATIONS:
CONCEPTS:	Performance evaluation.
Bony prominence, Ischemia	
Necrosis, Asymmetric, Edema Supple, Tenting, Turgor	RECORD OF EVENT: Observe nurse bathing
Lesion, Pressure, Macerate	patient.
Protocol Dependent Edema	pactone.

Protocol, Dependent Edema EVENT: Nurse assesses patient's skin.

FOCUS QUESTION for week #6 [plus 7,8] How can the nurse auscultate the patient?

THEORY

PRACTICE

THEORY
PHILOSOPHY:
Nurses are patient
advocates.
THEORY :
Theory of physics
(sound conduction).
PRINCIPLES:
1. A closed cylinder will
transmit sound waves
(vibrations) from source and
up the column.
2. Vibrations under the skin
can be transmitted to the
nurse's ear via a closed
cylinder.
3. The longer and thinner the
cylinder, the more
distortion of sound waves
will occur.
4. Any vibration contacting
the closed cylinder system
will be transmitted up the
column.
5. Sounds are altered when the
movement of sound waves is
interrupted.
6. A firm diaphragm (flat
surface) on the skin and
attached to closed
cylinder best transmits
high pitched sounds and
(screens out low pitched
sounds).
7. A concave (bell curved
surface) pressed lightly to
skin and attached to closed
cylinder best transmits low
pitched sounds.
CONCEPTS:
Cylinder, Auscultate
Sound waves (vibrations)
Distortion, Bell end piece
Diaphragm end piece
High/low pitches

VALUE CLAIMS: Assessment of abnormalities is first step in problem solving.

KNOWLEDGE

CLAIMS:

- 1. Place stethoscope on areas to be auscultated while listening to sounds.
- Use stethoscope with short, thick tubing.
- 3. Use one or two fingers to touch only the end piece.
- 4. Do not allow stethoscope tubing to touch or rub against anything.
- 5. Use diaphragm end piece with firm pressure to hear high pitched sounds.
- Use bell end piece with light pressure to hear low pitched sounds.

TRANSFORMATION: Performance evaluation.

RECORD OF EVENT: Observe nurse.

EVENT: Nurse auscultates patient.

FOCUS QUESTION for week #4 How does the nurse p THEORY	
 PHILOSOPHY: Nurses are patient advocates. THEORY: Theories of physiology, earth science, psychology. PRINCIPLES: 1. Touching patient is a physical invasion of his/her space. 2. Palpation uses the sense of touch through hands and fingers: a. finger pads are especially sensitive due to numerous nerve endings. b. palmer surfaces and finger pads are sensitive to discriminating textures, consistencies and size. c. ulnar surfaces are especially sensitive to vibrations. d. dorsal surfaces are especially sensitive to crude temperatures. 3. Palpations provide touch sensitivity for varying depths: a. light: < than .5 inch (lcm) b. deep: < than 2 inches (4cm) 4. Deep palpation may illicit pain or movement of tissue/ fluid with subsequent patient fear. 5. Touch sensitivity is decreased during application of deep pressure. 6. Skin temperature reflects amount of blood under skin, metabolism and exposure. CONCEPTS: Space invasion, Vibrations Palpation (light/deep) Sensitivity, Finger pads Palmer surface, Ulnar surface Dorsal surface, Temperature Texture, Masses 	VALUE CLAIM: Assessment of abnormalities is first step in problem solving.KNOWLEDGE CLAIM: 1. Introduce self and explain plans before touching patient.2. Use gentle warm hands with short fingernails.3. Use galmer surface and finger pads to feel for masses, texture, moisture, consistency.4. Use ulnar surface when feeling vibrations.5. Use dorsal surface to assess crude temperatures.6. Do light palpation before deep palpation.7. Palpate tender areas last.8. Use non dominant hand for deep palpation.7. TRANSFORMATION: Performance evaluation.RECORD OF EVENT: Observe nurse.
EVENT:	OBSELVE HULSE.

EVENT: Nurse palpates parts of patient.

FOCUS QUESTION for week 4 [plus 5,6,7,8,13,14,15] How does the nurse inspect the patient? THEORY PRACTICE PHILOSOPHY: VALUE CLAIMS: Nurses are patient advocates. Assessment of abnormalities is first THEORY: step in problem Theories of physiology and solving. psychology. KNOWLEDGE CLAIMS: PRINCIPLES: 1. Observe patient's 1. Actions and body language actions and body reflect meanings and language. 2. Expose body areas to emotional states. 2. Inspecting some parts of be inspected the body is an invasion of adequately with good light. privacy. 3. Inspection uses the senses 3. Maintain patient of sight and smell. privacy 3. Adequate visibility is by: needed for accurate a. only exposing observation. areas being 4. Knowledge of baseline data inspected. ("normals") gives basis to b. close assess change. door/curtain to 5. Inspection may include indicate to measurements to quantify others to signal observations. (knock) prior to 6. Opposite lateral sides of entering. the body are crudely 4. Look and smell when symmetric unless an inspecting skin, abnormality exists. lesions and 7. Skin color reflects: orifices. 5. Assess area for a. pigmentation. b. quality and quantity of color, underlying blood flow. contour, odor and 8. Contour changes reflect size. 6. Obtain baseline data fluid accumulation, displacement or masses in from patient, chart, underlying tissue. and/or actual measurements. CONCEPTS: 7. Compare left and Inspection, Body language right sides Baseline/"normals", Edema of body for symmetry Quantified observation when appropriate. Color (pigmentation) Displacement, Turgor **TRANSFORMATION:** Contour, Symmetry Performance evaluation. Orifice, Blood flow Lesions, Temperature **RECORD OF EVENTS:** Observe nurse.

> EVENT: Nurse inspects patient.

FOCUS QUESTION for week #7 [plus 8]:

How does the nurse percuss his/her patient?

THEORY

PHILOSOPHY: Nurses are patient advocates.

THEORY:

Theory of physics (sound conduction).

PRINCIPLES:

- Percussion ("tapping") produces vibrations (sound waves moving through under lying tissue).
- Prolonged finger or hand contact on area vibrated will dampen (slow) sound waves.
- Percussion tones are related to density of matter as it vibrates.
- 4. Loudness of tone is inversely proportional to density of matter:
 - a. tympany (loudest): over gas bubbles (ie, stomach).
 - b. hyperresonant: over air filled lungs (ie, emphysemic lungs).
 - c. resonant: over "normal" lungs.
 - d. dullness: over fluid
 filled or solid organ or
 mass (ie, cyst, liver,
 tumor).
 - e. flat (softest): over solid and dense mass (ie, bone, muscle).

CONCEPTS:

percuss, tone, density vibration, sound waves tympany, hyperresonant resonant, dull, flat

PRACTICE

VALUE CLAIM: Assessment of abnormalities is first step in problem solving.

KNOWLEDGE CLAIM:

- Percuss body parts to assess density of air, fluid or solid matter in underlying tissue.
- To percuss directly, tap tip of one finger directly on patient's skin.
- 3. To percuss indirectly, tap tip of one finger on the only finger of other hand which lies firmly on patient's skin.
- Use short, sharp, rapid tap which originates from snap of loose wrist action or a percussion hammer.

TRANSFORMATION: Performance evaluation.

RECORD OF EVENT: Observe nurse.

EVENT:

Nurse percusses parts of body.

FOCUS QUESTION for week # 7:

How does the nurse assess a patient's respirations?

THEORY:

PHILOSOPHY: Nurses are patient advocates.

THEORY: Theory of physiology/anatomy of respiratory system.

PRINCIPLES:

- 1. Air passing through healthy respiratory tract causes rhythmic, soft, rustling sounds which are bilaterally equal upon auscultation.
- 2. Air passing through moisture causes intermittent crackly sounds upon auscultation.
- 3. Air passing around obstructions causes coarse musical sounds upon auscultation.
- 4. Air passing around an obstruction in an upper airway causes a harsh, inspiratory "crow" heard without auscultation.
- 5. Accessory chest muscles facilitate expansion and contraction of lungs.
- 6. Sudden onset of cyanosis indicates acute inadequate tissue perfusion of oxygenated blood.

CONCEPTS:

auscultation, breath sounds (bronchial, bronchovesicular, vesicular), rales, rhonchi, wheeze, stridor, retractions cyanosis, hypoxia

VALUE CLAIMS: Assessment of abnormalities is first step in problem solving.

KNOWLEDGE CLAIMS:

- 1. Assess rate, rhythm, depth, and quality of respirations.
- 2. Assess breathing for abnormal noises without stethoscope.
- 3. Auscultate posterior, anterior and lateral breath sounds systematically comparing left to right.
- 4. Observe use of accessory muscles for breathing.
- 5. Assess skin, buccal membranes and nail beds for color changes.

TRANSFORMATIONS: Performance evaluation.

RECORD OF EVENT: Observe nurse.

EVENT: Nurses assess patient's respirations. **PRACTICE:**

FOCUS QUESTION for week #6: How does the nurse assess a patient's blood pressure?THEORY:

PRACTICE:

PHILOSOPHY: Nurses are patient advocates. THEORY: Theory of physiology of cardiovascular system.

PRINCIPLES:

- Pulses are vibrations of fluid waves as blood is pumped from heart to arteries.
- 2 a. Systolic pressure reflects maximum pressure exerted on arterial walls as left ventricle contracts [pumps to arteries]
 - b. Diastolic pressure reflects pressure of elastic tone in arterial walls when heart is at rest.
- 3. In a normal cardiovascular system:
 - a. level of cardiac output is directly proportional to level of blood pressure
 - b. level of blood pressure is directly proportional to level of peripheral vascular resistance, vascular elasticity and vasoconstriction
 - c. level of peripheral vascular resistance is inversely proportional to lumen of arteries.
 - d. level of blood pressure is directly proportional to blood volume/viscosity
- 4. Vasomotor center in brainstem exerts control on level of blood pressure. CONCEPTS:

systolic/diastolic pressure elastic tone, lumen (artery) vasoconstriction, cardiac output, vasomotor center, peripheral vascular resistance, blood viscosity, volume. VALUE CLAIMS: Assessment of abnormalities is first step in problem solving. KNOWLEDGE CLAIMS:

- Palpate brachial pulse and apply cuff with indicator (arrow) one inch above pulsation.
- 2. Use cuff which is 20% wider than diameter of arm.
- 3. Palpate radial artery and inflate cuff 20-30 mm.Hg. above point of pulse disappearance.
- 4. Read manometer at eye level.
- Place diaphragm of stethoscope over brachial artery and slowly/smoothly deflate cuff.
- 6. Note number where:
 - a. first consecutive tapping was heard.
 - b. abrupt muffling
 (damping) sound
 heard.
 - c. complete disappearance of sound occurred.
- Deflate and remove cuff before documenting.
- 8. Use thigh with popliteal artery if needed (and expect systolic reading to be 10-40 mm.Hg. higher).

TRANSFORMATION: Performance evaluation.

RECORD OF EVENT: Observe nurse. EVENT: Nurse checks patient's blood pressure.